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Abstract

We develop a model of activism and green transition with endogenous activist entry,

trading, and exit in which a firm’s transition rate depends on the efforts of both its

management and the activist. Activism raises the green transition rate under first best

but causes underinvestment in efforts and can hamper transition under moral hazard.

Activists either accumulate a larger stake over time, leading to increased engagement

and transition rate, or gradually exit. Carbon taxation boosts the transition rate and

discourages activist exit conditional on entry, but can deter activist entry if set too

high. The optimal carbon tax exceeds the Pigouvian level when the activist has strong

incentives to enter, e.g., due to impact preferences or financial profits from activism;

otherwise, it may lie below that level. Green investment subsidies raise firm-level

transition efforts, but crowd out activism and generally hamper green transition.
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There is widespread consensus that a green transition in production technologies is nec-

essary to address climate change (Acemoglu, Akcigit, Hanley, and Kerr, 2016; Besley and

Persson, 2023) and that the long-term environmental impact of economic activity is pro-

foundly affected by the rate of green transition (Popp, 2002; Acemoglu, Aghion, Bursztyn,

and Hemous, 2012). Over the past few years, financial markets have sought to accelerate

the pace of the green transition by directing companies toward environmental objectives

through both passive and active investment strategies. Passive strategies involve investing

in “clean” firms and divesting from “dirty” firms so as to influence their cost of capital to in-

centivize investment in green transition. In active strategies, investors exercise their control

rights to impact firms’ decisions, such as through board representation, management over-

sight, strategy development, or voting on proposals. Recent research suggests that passive

strategies, despite their popularity, may have little impact on firm behavior (Heath, Mac-

ciocchi, Michaely, and Ringgenberg, 2021; Berk and Van Binsbergen, 2022) and could even

have adverse environmental effects (Hartzmark and Shue, 2023). Investor activism is thus

increasingly being advocated as the preferred and more effective approach to sustainable

finance (Krueger, Sautner, and Starks, 2020; Broccardo, Hart, and Zingales, 2022).

Our objective in this paper is to understand whether and when investor activism can

facilitate the green transition and how such activism interacts with environmental regulation.

To do so, we develop a unifying model of investor activism with endogenous activist entry,

post-entry trading, and exit. In this model, activism increases the green transition rate

under first best, but three frictions may limit its effectiveness. First, the green transition

rate depends on the efforts of both the firm’s management and the activist, which are costly

and subject to moral hazard. The activist’s incentives to exert effort increase with its stake

in the firm, but may crowd out management’s effort incentives and vice versa. Second,

activist investors cannot fully capture the gains of activism since existing shareholders free-

ride on the activist’s efforts. This free-rider problem reduces the activist’s incentives to enter

and may even deter entry when sufficiently severe. Third, when given the opportunity, the

activist discretionally trades in the firm’s stock and may get more invested or gradually exit

the firm. Therefore, an activist cannot commit to holding a particular stake in the firm

and thus to a specific level of effort. Consequently, an activist’s impact is determined by

interconnected entry, effort, trading, and exit decisions. As we show, environmental policies
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such as carbon taxes or green investment subsidies may distort activist decisions on each

of these margins. Our model allows us to examine how activists respond to environmental

regulations and which type of regulations facilitate an activist’s impact on a green transition.

Importantly, our model of investor activism is general, can accommodate pecuniary and non-

pecuniary preferences (but does not require the stipulation of non-pecuniary preferences),

and applies broadly to various types of activism or activist investors, including private equity

funds, hedge funds, or wealthy individuals.

To capture the key determinants of environmental activism, we develop a dynamic model

in which a firm with a dirty/polluting production technology invests to transition toward

a clean/green production technology. Transitioning to the clean technology may generate

both non-pecuniary and pecuniary benefits to firm owners.1 However, the transition process

is both costly and uncertain. The rate of successful green transition increases with the effort

of the firm’s manager, who broadly represents the firm’s key personnel and executives that

affect firm outcomes. As effort is unobservable, costly, and subject to moral hazard, firm

owners provide management with incentives to exert effort by making compensation sensitive

to the transition process.

While the firm is initially owned by passive investors, an activist may enter the firm by

buying an initial ownership stake. The activist and passive investors differ in two dimensions.

First, unlike passive investors, the activist exerts private and costly effort which, in addi-

tion to managerial effort, facilitates the green transition. The activist’s effort captures its

engagement with the firm, for instance, by monitoring management, appointing key person-

nel and board members, developing strategies, or voting on proposals. Second, the activist

incurs a holding (disutility) cost per unit of firm ownership. This holding cost may reflect

an activist’s financial and capital constraints, which increase the cost of capital and reduce

the benefits of investment, or its sustainability preferences and (green) investment mandate,

which make it costly to invest in a polluting firm.

We first show that while activism is valuable and speeds up green transition in first best,

it introduces a double-agency problem that distorts effort incentives in the presence of moral

1These benefits could emerge from a range of factors. This includes mechanisms like carbon taxation and
pricing, which decrease the value of polluting firms. Additionally, sustainability preferences among stock
market participants may result in higher (or lower) valuations for more (or less) sustainable firms. Consumer
preferences also play a role through higher demand for the goods produced by sustainable firms.
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hazard. Notably, the activist’s incentives to exert effort are reduced relative to first best as

the activist only captures part of the gains from effort while incurring the full cost. This is

for two reasons. First, the activist only owns part of the firm. Second, part of the transition

surplus accrues to management as part of the incentive contract. In effect, effort incentives

provided to management reduce the activist’s effort. Thus, the efforts of the activist and

management endogenously arise as substitutes and lie below first-best efforts. Due to the

double-agency problem, activism can increase or decrease the green transition rate (relative

to passive investors owning the firm). In particular, “good” or skilled activists, characterized

by a low effort cost and high effort level, facilitate the green transition, whereas “bad” or

less skilled activists, characterized by a high effort cost, hamper it.

After entry, the activist may trade discretionally in the firm’s stock, allowing it to in-

crease or decrease its stake in the firm. To account for potential trading frictions/costs in

reduced form, we assume that the activist cannot trade the firm’s stock over a period of

time after entry, while trading is frictionless afterward. This assumption also allows us to

model both private and public firms, respectively characterized by infrequent and frequent

trading opportunities. Once the activist can trade in the firm’s stock, its trading rate is

determined by two opposing forces and, hence, can be positive or negative. First, there are

gains from buying a larger stake, as this makes contracting with the manager more efficient.

Second, there are gains from selling the firm’s stock because the activist has a holding cost

for the firm’s stock. Our analysis reveals that after entering the firm, less skilled activists

tend to gradually exit, whereas relatively more skilled activists tend to gain more control by

acquiring a larger stake over time. Importantly, this larger stake translates into higher effort

levels, as the activist captures a larger fraction of the benefits associated with transition. As

a result, conditional on entry, the possibility for the skilled activist to acquire a larger stake

over time fosters the transition to a clean technology.

In the model, the activist improves firm value through private and costly effort. However,

if this value creation is fully reflected in the price at which it acquires a stake in the firm, the

activist cannot capture the gains from activism and thus has no incentive to invest in the first

place, causing a free-rider problem (Grossman and Hart, 1980; Shleifer and Vishny, 1986).

Two key assumptions regarding entry determine the severity of the free-rider problem. First,

the activist must initially acquire a minimum ownership stake to be able to influence firm

3



outcomes and exert control. Second, when entering the firm, the activist can buy a fraction

of the firm at the pre-entry price (i.e., the firm’s stock price under passive ownership), while

acquiring the remaining shares at a price that reflects the gains achieved through activism.

The activist then enters the firm as long as the payoff from engaging with the firm exceeds its

reservation utility. As we argue, this reservation utility is lower if the activist has an intrinsic

motivation to transform the firm, capturing its preferences for impact or sustainability. We

also show that it may be optimal for the activist to enter the firm by acquiring an initial

ownership stake (at a relatively low price), while gradually exiting by selling its ownership

stake (at a relatively high price) post-entry.

Interestingly, better trading opportunities exacerbate the free-rider problem for skilled

activists by allowing them to acquire a larger share of the firm over time, thereby increasing

firm value and the initial acquisition price. In contrast, for less skilled activists, better

trading opportunities speed up exit and reduce the initial acquisition price. Better trading

opportunities therefore discourage entry by good activists while encouraging entry by bad

activists. That is, our findings suggest that private markets, characterized by less frequent

trading opportunities, should see better, more impactful activists (e.g., private equity owners)

and less (premature) exit.

Without regulation, the manager and the activist underinvest in green transition. The

presence of a negative externality thus calls for regulation aimed at fostering the transition.

Equipped with our general model of investor activism, we evaluate the effects of two common

environmental policies, namely carbon taxes and green investment subsidies, on the green

transition rate. In essence, carbon taxes reduce the value of a firm with a dirty technology,

thereby increasing the financial gains from transitioning to a green technology. Carbon taxes

lead to more effort from the activist and the manager, while increasing the activist’s stake

post-entry and discouraging activist exit. Hence, conditional on activist entry, carbon taxes

facilitate the green transition. However, carbon taxation also potentially reduces the ac-

tivist’s entry incentives. In particular, carbon taxes increase the activist’s post-entry impact

and hence the value created through activism and the free-rider problem that disincentivizes

entry. Whether carbon taxation encourages or discourages activist entry crucially depends

on the quality of the activist and the severity of the free-rider problem, as captured by the

fraction of the firm that the activist can initially buy at the pre-entry price.
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Strikingly, when the free-rider problem is severe, high carbon taxes hamper the green

transition by discouraging good (skilled) activists and encouraging bad (less skilled) activists

to enter. Thus, to leverage the effects of activism on green transition, the carbon tax or,

similarly, the price of carbon within a cap and trade scheme must not be too high. That is,

the optimal carbon tax exceeds the Pigouvian level when the activist has strong incentives

to enter, e.g., due to impact preferences or financial profits from activism. In this case,

the carbon tax addresses the double-agency problem without affecting the activist’s entry

decision. Otherwise, when activism is beneficial for green transition but activist entry is

hard to incentivize, the optimal carbon tax can lie below the Pigouvian tax.

We also examine the effects of firm-level investment subsidies on the green transition rate.

Such investment subsidies, as for instance stipulated in the Inflation Reduction Act in the

U.S., effectively reduce the cost of investment on the firm level either directly or indirectly via

tax credits. Firm-level investment subsidies make it optimal to incentivize higher managerial

effort. However, this requires a larger incentive compensation for management, thereby

reducing the activist’s effort incentives and crowding out activist effort. Importantly, we

show that precisely when activism is valuable, investment subsidies hamper green transition.

This is for two reasons. First, subsidies reduce overall effort by crowding out activist effort.

Second, subsidies discourage entry and increase exit incentives of good activists, reducing

the extent of “good” activism. Our analysis therefore suggests that the regulator should not

rely on investment subsidies to boost the green transition, in contrast with the findings in

Acemoglu et al. (2012) and Acemoglu et al. (2016) that, absent moral hazard and activism,

subsidies are effective at fostering the green transition.

Our paper relates to the literature on shareholder activism and blockholders (see, e.g.,

Admati, Pfleiderer, and Zechner (1994); Maug (1998); Bolton and von Thadden (1998);

Edmans and Manso (2011); Brav, Dasgupta, and Mathews (2022)).2 Admati and Pfleiderer

(2009) and Edmans (2009) analyze the role of exit as a governance mechanism. Most closely

related to our paper, DeMarzo and Urošević (2006) and Back, Collin-Dufresne, Fos, Li, and

Ljungqvist (2018) study the trading of a large shareholder that affects firm performance via

costly effort. Our paper differs from these by allowing the activist to affect firm performance

2See Edmans and Holderness (2017) and Denes, Karpoff, and McWilliams (2017) for surveys on block-
holders and shareholder activism.
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not only via its own effort but also by contracting with management.3 A higher activist

stake makes contracting more efficient and generates gains from trade, leading to the novel

result that the activist may dynamically buy a larger stake despite holding costs. Another

key innovation is that we endogenize entry, show how dynamic trading interacts with the

activist’s entry decision, and highlight a complementarity between entry and exit.

Our paper also relates to the growing literature on sustainable finance (see, e.g., Heinkel,

Kraus, and Zechner (2001), Davies and Van Wesep (2018), Albuquerque, Kroskinen, and

Zhang (2019), Green and Roth (2021), Hong, Wang, and Yang (2021), Gupta, Kopytov, and

Starmans (2022), Geelen, Hajda, and Starmans (2023), Edmans, Levit, and Schneemeier

(2023), Huang and Kopytov (2023), Landier and Lovo (2023), Allen, Barbalau, and Zeni

(2023)). We contribute to this literature by studying how investor activism can foster the

green transition in a dynamic model with moral hazard and endogenous activist entry, trad-

ing, and exit. In this literature, our paper is most closely related to Broccardo et al. (2022),

Jagannathan, Kim, McDonald, and Xia (2022), and Oehmke and Opp (2022). The first two

papers study the effectiveness of exit and voice strategies in reducing firms’ negative external-

ities, whereby voice and exit are examined separately. In our model, activists endogenously

decide to invest in a firm to reduce externalities under moral hazard and can trade to increase

impact or exit, leading to an endogenous composition of the firm’s shareholder base and in-

terlinked voice and exit. In Oehmke and Opp (2022), an entrepreneur raises capital from

financial or socially responsible investors under moral hazard. Our model differs because (i)

the efforts of both management and the activist are crucial for the green transition, causing

a double-agency problem that hampers impact, and (ii) the activist’s post-entry trading and

exit interact with incentives, with novel implications for optimal regulation.

Our paper is motivated by growing empirical evidence that shareholder engagement and

environmental activism can facilitate the green transition (Dimson, Karakaş, and Li, 2015;

Kölbel, Heeb, Paetzold, and Busch, 2020). According to a recent survey by Krueger et al.

(2020), institutional investors consider engagement rather than divestment as a more effec-

tive approach to address climate risks. Wiedemann (2023) and Ilhan, Krueger, Sautner, and

3Our paper solves for the equilibrium trading strategy using a methodology similar to DeMarzo and
Urošević (2006), which has found fruitful applications in various other settings. Marinovic and Varas (2021)
analyze dynamic blockholder trading in the presence of asymmetric information. Hu and Varas (2021) study
loan sales by intermediaries in the absence of commitment. DeMarzo and He (2021) study leverage dynamics
in a model in which a firm smoothly issues (but never buys back) debt to exploit tax benefits.
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Starks (2023) provide evidence that institutional investors directly engage with firms’ man-

agement to foster green transition and to enhance climate risk disclosure respectively. Akey

and Appel (2020), Naaraayanan, Sachdeva, and Sharma (2023), and Azar, Duro, Kadach,

and Ormazabal (2021) show that engagements by hedge funds, pension funds, and large

asset managers respectively cause targeted firms to reduce their emissions.4 Bellon (2022);

Kumar (2023) study private equity owners’ impact on green transition, highlighting envi-

ronmental activism and impact investing in private markets (Cole, Jeng, Lerner, Rigol, and

Roth, 2022).

1 A Model of (Green) Activism and Impact

This section presents a model of investor activism, in which an activist invests in a firm to

transform its production technology. The activist does so through its own private effort and

by incentivizing the firm’s manager with an optimal contract. The manager or, alternatively,

management more broadly represents the firm’s key personnel and executives who are able

to influence firm outcomes. The activist’s private effort captures its engagement with the

firm, for instance, by monitoring management, appointing key personnel and board mem-

bers, developing strategies and proposals, providing industry connections, or by voting on

proposals. Our model applies to both private and public firms, while the activist may rep-

resent a hedge fund, a pension fund, a private equity fund or other types of active investors,

such as wealthy individuals or philanthropists.5

Technology and Preferences. Time t ∈ [0,∞) is continuous and infinite. There are three

risk-neutral agents with common discount rate ρ > 0: An activist investor, a (representative)

passive investor, and a manager. We consider a single firm run by the manager that produces

cash flows at a constant rate µ > 0. The firm is all equity-financed with a fraction θt ∈ [0, 1]

4Their findings suggest investor engagements as an effective tool to address climate change risks in line
with the result in Albuquerque, Fos, and Schroth (2022) that 75% of the value creation by activist investors
who focus on governance issues is achieved through treatment, rather than stock picking or sample selection.

5Hedge funds and private equity funds often actively engage with their portfolio companies to influence
outcomes (Brav, Jiang, Partnoy, and Thomas, 2008; Kaplan and Strömberg, 2009). Bellon (2022); Kumar
(2023) study private equity owners’ impact on green transition. Akey and Appel (2020); Naaraayanan et al.
(2023); Azar et al. (2021) respectively show how the engagement of hedge funds, pension funds, and asset
managers causes targeted firms to reduce emissions. von Beschwitz, Filali Adib, and Schmidt (2023) provide
evidence that active mutual funds exert control by voting in favor of ESG proposals following ESG scandals.
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of its equity held by an activist investor and the remaining 1−θt held by the passive investor.

The number of outstanding shares is normalized to one. The manager effectively holds a stake

in the firm via its incentive contract and compensation set by the firm’s shareholders; this

stake may be equity-like too. The firm pays out all cash flows net of managerial compensation

as dividends. Its endogenous stock price (i.e., equity value) is denoted by Pt at time t.

At the onset at time t = 0, the firm has a polluting (or dirty) production technology,

but its owners aim to transition to a clean or green production technology. We model the

transition process as an innovation project that is completed at a random time T arriving

with intensity Λ > 0, whereby the outcome of the transition process—success or failure—

depends on the activist’s and manager’s efforts at ∈ [0, ā] andmt ∈ [0, m̄]. Specifically, over a

short time interval [t, t+dt), the process is completed with exogenous probability Λdt. Upon

completion, a transition is successful with probability at+mt and fails otherwise. Thus, over

[t, t+ dt), the instantaneous probability of successful transition equals λtdt := Λ(at +mt)dt.

We refer to λt as the (green) transition rate. We focus on parameters that lead to optimal

interior efforts, i.e., at ∈ (0, ā) mt ∈ (0, m̄), and a well-defined probability at +mt ∈ (0, 1).

Figure 1 illustrates the transition process over an instant [t, t+ dt). We purposefully model

a simple transition process, which allows us to analytically characterize the model solution

and dynamic effects of activism.6 As the transition process is stationary, any time dynamics

that arise in optimum are endogenous and attributable to activism.

The completion and outcome of the transition process are publicly observable and con-

tractible. In case of success, the firm becomes clean “C” and its owners realize a terminal

payoff V C per unit of ownership. In case of failure, the firm remains dirty “D” and generates

a terminal payoff V D per unit of ownership. For simplicity, passive investors and activists de-

rive equal terminal payoffs when the transition process ends. The surplus ∆ := V C−V D ≥ 0

from a successful transition (relative to failure) is positive and broadly captures the finan-

cial and non-pecuniary gains from green transition. As we argue later, carbon taxation or

investor preferences for green firms imply a higher ∆. Abstracting from non-pecuniary gains

of green transition, one can interpret ∆ as the difference between a green firm’s value (stock

price) V C and a dirty firm’s value V D. Note that even though ∆ ≥ 0, exerting high effort

6Board and Meyer-ter Vehn (2013), Hu and Varas (2021), and Mayer (2022) among others, employ similar
modeling of uncertainty. Similar results would arise if we assumed that transition occurred at random time
T arriving with Poisson intensity λt = Λ(at +mt) as in, e.g., Acemoglu et al. (2016).
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Time t Time t+ dt

Λdt at +mt Success

1− (at +mt)

Failure

Efforts: at,mt

T > t+ dt and continuation

T = t+ dt and V D

T = t+ dt and V C

1− Λdt

No completion

Figure 1: Description of the transformation process and heuristic timing over [t, t+dt). The
branches of the tree contain the probabilities of the respective random event over [t, t+ dt).

for green transition can have a negative net present value, due to the cost of effort.

Transition and Moral Hazard. Efforts at and mt are chosen before it is known whether

the project is completed over the next instant [t, t + dt). Efforts at and mt are hidden

and come at private flow costs
κa2t
2

and
ϕm2

t

2
to the activist and the manager respectively,

giving rise to a double-agency problem.7 To deal with this agency problem, the controlling

shareholder—which is either the activist or the passive investor—writes at each time t, a

short-term contract that stipulates state-contingent compensation to the manager over the

next instant [t, t + dt). The short-term contract (Bt, ct) stipulates a payout Bt in case the

firm successfully transitions over [t, t+ dt) in addition to a base salary ctdt. The payout Bt

corresponds to a lumpy payment and therefore is “large” relative to the base salary which

is of order dt, i.e., infinitesimal. With no loss in generality, we normalize the manager’s

reservation utility to zero, so that its expected payoff from the contract must be positive.

The formulation of the short-term contracting problem in continuous time is similar to He

and Krishnamurthy (2011) and is discussed in greater detail in Appendix A.1, which also

shows that the optimal short-term contract takes the aforementioned form.

Activist Stake and Trading: Public versus Private Firms. The activist acquires an

endogenous ownership stake θ0 in the firm at time t = 0. After entry, the activist cannot

trade over a time period (0, T β), where T β is a stochastic time that arrives with intensity

7Equivalently, we could assume that efforts are observable but not non-contractible.
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β ≥ 0. Thus, after entry, the activist must wait on average 1/β units of time before being

able to adjust its stake. When β = 0, the activist cannot trade after entry and maintains

constant ownership up to time T . In the limit β → ∞, trading post-entry is without friction.

One may associate a publicly traded firm with high or infinite β, whereas private firms are

characterized by lower levels of β and less frequent trading opportunities for investors. For

private firms, T β may also be interpreted as the time of the IPO after which the firm’s stock

can be traded publicly.8 In the case of a public firm (high β), the activist may represent a

hedge fund, while in the case of a private firm (low β) the activist may represent a private

equity sponsor. The assumption of no-trading over (0, T β) can be interpreted as the activist

committing to an investment horizon over which it does not adjust its stake and, specifically,

does not exit. Under this interpretation, β is inversely related to the activist’s commitment

power; in fact, β = 0 implements the full-commitment solution.9

When the activist can trade, i.e., after time T β, the heuristic timing over [t, t + dt) is

as follows. First, given an activist stake θt, the firm’s controlling shareholders (i.e., the

activist when θt > 0) and the manager sign a contract (Bt, ct) lasting over [t, t+dt). Second,

uncertainty as to whether the transition process is completed and succeeds or fails is resolved.

Payments are made by the firm and the contract ends: The manager receives Bt in case of

success, zero in case of failure, and ctdt in case of no completion. In case of completion,

active and passive investors realize terminal payoffs, and the model ends. Third, in case

the transition process is not completed, the activist trades the firm’s stock and chooses dθt,

determining next-period stake θt+dt = θt+ dθt. Then, at time t+ dt with activist stake θt+dt,

controlling shareholders and the manager sign a contract over [t+ dt, t+ 2dt), and so on.

Payoffs. Given a contract (Bt, ct), the manager’s expected payoff is wtdt with

wt := max
mt≥0

(
Λ(ât +mt)Bt −

ϕm2
t

2
+ ct

)
, (1)

where ât is the level of (hidden) effort by the activist that the manager anticipates. In

equilibrium, ât coincides with actual effort at. The manager chooses at time t its private

8Unlike public equity markets, private equity markets feature only infrequent and lumpy trading. Private
equity funds typically hold a constant stake for an extended period of time (e.g., the duration of the fund).

9Because before time T , our setting is essentially stationary and firm fundamentals do not change, there
is no motive for dynamic trading under full commitment. As such, under full commitment and conditional
on entry, the activist would choose constant ownership stake, which is akin to assuming β = 0.
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effortmt over [t, t+dt) against the cost
ϕm2

t

2
dt. Over [t, t+dt), the transition process completes

with probability Λdt, resulting in success and payment Bt with probability at+mt and failure

and zero payment otherwise. See Appendix A.1 for more details.

When the activist does not enter, the passive investor is the controlling shareholder and

dynamically chooses contracts (Bt, ct) to maximize its private valuation of the firm:

P 0
t = max

(cu,Bu)u≥t

Et

[∫ T

t

e−ρ(u−t)(µ− cu)du+ e−ρ(T−t)
[
V D +mT (∆−BT )

]]
, (2)

subject to the participation constraint wu ≥ 0 for all u ≥ t. The passive investor’s valuation is

the discounted sum of the firm’s expected future dividends (i.e., cash flows net of managerial

compensation) plus the terminal payoff at time T when the transformation process ends.

The terminal payoff is V D in case of failure and V D + ∆ − BT in case of success. The

probability of success at time T is mT because the passive investor does not exert any effort

and aT = 0. If the activist does not enter, then P 0
t is also the firm’s stock price.

When the activist enters and θ0 > 0, it becomes the controlling shareholder (as discussed

below) and chooses contracts (Bt, ct), its effort at, and trading dθt to maximize:

Vt = max
(au,cu,Bu,dθu)u≥t

Et

[ ∫ T

t

e−ρ(u−t)

(
θu(µ− π − cu)du− κa2u

2
du− (Pu + dPu)dθu

)
+ e−ρ(T−t)θT

[
V D + (aT +mT )(∆−BT )

]]
(3)

subject to wu ≥ 0 for all u ≥ t. The activist has sustainability or “green” preferences, in

that it derives a disutility flow πθu from owning a fraction θu of the dirty firm. The disutility

flow—akin to a flow holding cost π ≥ 0 per unit of stock— may also reflect (in reduced form)

the activist’s financial or capital constraints or higher cost of capital, common in models of

activist investors (DeMarzo and Urošević, 2006; Marinovic and Varas, 2021).10 Because the

activist only owns a fraction θu of the firm, it only collects a fraction θu of dividends and

terminal payoff (net of managerial compensation), while fully incurring the private cost of

effort. The term −dθu(Pu + dPu) captures the payoff that the activist collects from trading

over a short time period (u, u+ du); when u < T β, we have dθu = 0. The activist has price

10We could also model a difference in financial/capital constraints by assuming that the activist applies a
higher discount rate. This would lead to qualitatively similar outcomes.

11



impact and trades over (u, u+ du) at “end-of-period” price Pu+du = Pu + dPu.

Due to the activist’s private cost of effort and green preferences, the value of the firm

under activist ownership from passive investor perspective differs from Vt and equals

Pt = Et

[∫ T

t

e−ρ(u−t)(µ− cu)du+ e−ρ(T−t)
[
V D + (aT +mT )(∆−BT )

]]
. (4)

The value of the firm from passive investors’ perspective Pt reflects the value generated

through activism. Observe that the activist and passive investors differ in two dimensions.

First, the activist exerts private effort, while passive investors do not. Second, the activist

incurs a flow holding cost (disutility) π ≥ 0 per unit of firm ownership. As such, one can

view passive investors as “activists” with κ → ∞ and π = 0.

At time T , the model essentially ends, and we can treat V D and V C as terminal payoffs

in case of failure and success respectively.11 Before time T , the activist’s value function,

the firm’s stock price, and other model quantities will be functions of both (i) the activist’s

stake θ and (ii) whether time T β has arrived (i.e., whether t < T β or t ≥ T β). In what

follows, we denote the activist’s value function and stock price after time T β by V (θ) and

P (θ). We denote the activist’s value function and stock price before time T β by V β(θ) and

P β(θ). More generally, the superscript “β” will indicate quantities before time T β.

Entry and the Free-Rider Problem. The activist increases firm value through private

and costly effort. However, if this value creation is fully reflected in the price at which it

acquires an initial stake in the firm, the activist cannot capture the gains from activism and

thus has no incentive to invest in the first place, causing a free-rider problem. Two key

assumptions regarding activist entry determine the severity of the free-rider problem. First,

the activist must acquire a minimum stake θ̃0 ∈ [0, 1] to be able to exert control and influence

firm outcomes, e.g., via monitoring or voice, in that θ0 ≥ θ̃0. Second, the activist can acquire

a fraction 1− η ∈ [0, 1] of the minimum stake θ̃0 at the price P 0
0 , defined in (2), that would

prevail under passive ownership. The remaining fraction η is bought at a price P0 = P β(θ0),

defined in (4), that reflects the gains from activism.12 The weight η thus captures the severity

11After the transition has succeeded or failed at time T , there is no more effort or contracting with
management. At time T , the firm’s (passive or active) owners realize a payoff VT ∈ {V D, V C} by either
continuing to hold the company or by selling it to other equity investors at price VT .

12In practice, an activist can indeed accumulate a sizable ownership share before disclosing it, and noise
traders may obfuscate large trades by the activist (Kyle and Vila, 1991; Collin-Dufresne and Fos, 2016).
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of the free-rider problem regarding activist entry. Under this assumption, the activist pays

K(θ0) := (1− η)θ̃0P
0
0 +

[
θ0 − (1− η)θ̃0

]
P β(θ0) (5)

to acquire ownership stake θ0 ≥ θ̃0 and enters if and only if

E(θ0) := max
θ0∈[θ̃0,1]

[
V β(θ0)−K(θ0)

]
≥ R, (6)

where R is the activist’s reservation utility. The activist either acquires (at least) the required

minimum stake of θ̃0 at time t = 0 or never enters. We refer to the case of θt > 0 as active

ownership and to θt = 0 as passive ownership. We could assume that the activist must keep

a minimum stake θ̂ ≤ θ̃0 for all t ≥ 0 to be able to have impact on firm outcomes, without

changing our model’s key implications (see Appendix F.4). As we show in Proposition 2,

there exists a strictly positive (endogenous) level θmin > 0 so that the activist’s stake never

takes any value in (0, θmin). Appendix F.4 shows that our findings remain qualitatively

unchanged when imposing a minimum stake θ̂ > θmin.
13

Sustainability Preferences. Our model can capture preferences for sustainability on the

part of the activist investor via the flow holding cost π, the reservation utility R, and the

surplus generated upon successful green transition ∆. For our analysis only the difference

between active and passive investors’ sustainability-related utility matters, so we do not

explicitly model any sustainability preferences for passive investors. We also emphasize that

the stipulation of non-pecuniary or sustainability preferences is not necessary to motivate

the model elements π, R, and ∆, in that we present a general model of investor activism

which also applies to impact investing.

First, in addition to capital constraints, an activist’s holding costs or (warm-glow) disutil-

ity from owning a polluting firm may also reflect value-alignment preferences (Pástor, Stam-

In the U.S. for example Section 13(d) of the 1934 Act and Regulation 13D requires owners of more than
5% of the equity of a public firm to file a report with the SEC, at which point the identity of an activist
gets revealed. Collin-Dufresne and Fos (2015) report that the average activist holds 7.51% of the target’s
outstanding shares when making its first public disclosure through a Schedule 13D filing.

13We also view this focus as plausible as the activist may need to initially have sufficient ownership and
control rights to implement catalyzing changes that influence firm outcomes and policies, such as replacing
management or board members or changing the firm’s strategic plan. However, after these changes have
taken place, the activist may have continued influence with a smaller stake.
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baugh, and Taylor, 2021; Green and Roth, 2021; Landier and Lovo, 2023; Dangl, Halling,

Wu, and Zechner, 2023), arising from (impure) altruism (Andreoni, 1990), or a green invest-

ment mandate (Hong et al., 2021). Second, the activist may have a low reservation utility

due to its preferences for impact. The reservation utility R can even be negative when the

activist follows a broad impact mandate as in Oehmke and Opp (2022) and has an intrinsic

motivation to transform the firm; Appendix F.5 provides a micro-foundation for R < 0.

Third, in addition to a financial payoff component, the surplus generated upon successful

green transition ∆ may capture a non-pecuniary payoff that is realized by the firm’s (passive

or active) owners upon successful green transition.14

2 Model Solution

2.1 First-Best Benchmark

We start by characterizing the first-best benchmark that is obtained when efforts maximize

total surplus. In our model, first best efforts are determined according to15

(aFB,mFB) := arg max
a,m≥0

{
Λ(1− a−m)V D + Λ(a+m)(V D +∆)−

(
κa2 + ϕm2

2

)}
. (7)

First-best efforts equal aFB = Λ∆
κ

and mFB = Λ∆
ϕ
, increase with the expected benefits of

effort Λ∆, and decrease with effort costs. First-best total surplus and efforts do not depend

on π, because the firm is owned by passive investors (i.e., the first-best owners) to avoid the

deadweight loss stemming from the disutility flow incurred by the activist owning the firm.

14To illustrate this idea, consider the extreme case that there is no financial payoff to green transition, but
that firm owners derive a lump-sum utility payoff of ∆ per unit of ownership from green transition. Owning
fraction θT of the firm, an activist derives a total utility θT∆ upon green transition at T , as stipulated in
(3). More generally, ∆ could consist both of a pecuniary (financial) and such a non-pecuniary payoff.

15Total surplus satisfies S = E
[
e−ρT

(
V D + (aT +mT )∆

)
−
∫ T

0
e−ρt

(
κa2

t+ϕm2
t

2

)
dt
]
. As our setting is

stationary prior to time T , surplus-maximizing efforts are constant over time, at = a,mt = m. Thus,

S = 1
Λ+ρ

[
Λ(1− a−m)V D + Λ(a+m)(V D +∆)−

(
κa2+ϕm2

2

)]
, so (aFB ,mFB) satisfies (7). In first best,

efforts (aFB ,mFB) could be incentivized via a contract between the firm’s passive owners and the activist
(manager), whereby efforts are contractible and the activist (manager) is compensated for the effort cost.
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To ensure optimal interior efforts and at +mt ∈ [0, 1], we assume that:

∆ < ∆ :=
κϕ

Λ(κ+ ϕ)
.

2.2 Effort Incentives and Optimal Contract

Suppose now that effort levels are unobservable (and, thus, not contractible). At any point

in time t ≥ 0, the manager chooses mt to solve the optimization problem in (1), leading to

optimal managerial effort

mt =
ΛBt

ϕ
. (8)

As expected, a larger payment Bt incentivizes higher effort mt, while a higher cost ϕ reduces

effort. Next, consider the activist with ownership stake θt at time t. With probability Λdt,

the transformation process is completed. In case of success, with probability at + mt, the

activist’s payoff is V D+∆−Bt. Otherwise, in case of failure, it is V D. Note that because at

is hidden, any unobserved change in at does not change contracted payouts to the manager.

As such, the activist takes the contracted payouts ct and Bt as given when choosing at. That

is, the activist solves maxat≥0

(
θtΛat(∆−Bt)− κa2t

2

)
, leading to optimal effort

at =
θtΛ(∆−Bt)

κ
. (9)

Higher effort incentives provided to the manager through larger payment Bt limits the ac-

tivist’s payoff upon transformation, thus curbing the activist’s effort at.

To minimize agency costs and maximize its own payoff, the controlling shareholder designs

the manager’s contract such that the participation constraint wt ≥ 0 is tight at any time

t < T . This implies the manager’s flow compensation

ct =
ϕm2

t

2
− Λ(at +mt)Bt, (10)

upon setting wt = 0 in (1). A larger payment Bt is associated with a lower flow compensation

so that the manager’s total expected compensation remains constant. That is, an increase

in Bt increases the performance sensitivity but not the level of managerial compensation.16

16In our model, the contract (Bt, ct) only describes the part of managerial compensation that is related
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2.3 Solution to the Activist’s Problem

We solve the activist’s dynamic optimization problem in three steps. First, we characterize

optimal trading and efforts after time T β. Second, we solve for optimal efforts and derive

the activist’s value function for t ∈ (0, T β). Third, we characterize the activist’s decision to

enter at time t = 0. Model quantities depend on the activist’s stake θt = θ and on whether

time T β has arrived, but not on calendar time t as such. In what follows, we therefore omit

time subscripts and write at = a, mt = m, Bt = B. The model structure is such that we can

solve for most quantities in closed-form, some of which are relegated to Appendix A.3.

2.3.1 Optimal Dynamic Trading and Effort After Time T β

As we show in Appendix A.3, there exists an endogenous (possibly empty) smooth trading

region, in which the activist optimally trades smoothly according to dθ = θ̇dt. By (3) and

the dynamic programming principle, the activist’s value function Vt = V (θt) then solves

(ρ+ Λ)V (θ) = max
B≥0,θ̇

{
θ (µ− π − c)− κa2

2
(11)

+ Λθ
[
V D + (a+m)(∆−B)

]
+ θ̇
[
V ′(θ)− P (θ)

]}
,

subject to incentive constraints (8) and (9), i.e., m = ΛB
ϕ

and a = θΛ(∆−B)
κ

, and managerial

wage (10), i.e., c = ϕm2

2
−Λ(a+m)B. The term θ̇

[
V ′(θ)−P (θ)

]
captures the gains associated

with (smooth) trading. For an interior solution θ̇ ∈ (−∞,∞), it must be that

P (θ) = V ′(θ). (12)

Indeed, the activist is willing to pay V ′(θ) dollars for an additional unit of stock. The cost of

purchasing such a unit equals the market price of stock P (θ), i.e., passive investors’ valuation

of the firm’s stock. In equilibrium, the marginal benefit of buying equals the marginal cost.

Importantly, the activist is indifferent between trading smoothly and not trading at all,

and sensitive to transformation. In practice, the manager’s compensation depends on other firm outcomes
too. Thus, one can interpret ct < 0 as a salary reduction relative to an unmodeled base. One could capture
other components of managerial compensation by assuming an outside option w > 0. Then, payouts in (10)

would become ct = w +
ϕm2

t

2 − Λ(at +mt)Bt with a salary component w unrelated to transformation.
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and cannot capture any gains from trade. Therefore, the activist’s value function V (θ) is

determined “as if” it could not trade at all and hence coincides with its payoff V̂ (θ) that

would prevail absent any trading opportunities.

Plugging (12) into (11), we can solve for V (θ) = V̂ (θ) and get optimal efforts in closed

form. By (12), we then also obtain P (θ) in closed-form (see (A.6) in the Appendix A.3).

Proposition 1. Denote by κ̃ = κ/θ the activist’s cost of effort per unit of ownership. In the

smooth trading region, the value function satisfies V (θ) = V̂ (θ) with

V̂ (θ) = θ

(
µ− π + ΛV D

ρ+ Λ
+

∆2Λ2 (κ̃2 + ϕκ̃+ ϕ2)

2ϕκ̃ (κ̃+ ϕ) (ρ+ Λ)

)
, (13)

while the stock price satisfies P (θ) = V̂ ′(θ), and admits closed-form expression (A.6). Opti-

mal efforts satisfy

m = m(θ) =
κ̃

ϕ

(
Λ∆

ϕ+ κ̃

)
< mFB and a = a(θ) =

ϕ

κ̃

(
Λ∆

ϕ+ κ̃

)
< aFB. (14)

Under passive ownership, passive investors’ value function satisfies

P 0 =
µ+ ΛV D

ρ+ Λ
+

∆2Λ2

2ϕ(ρ+ Λ)
. (15)

Note that κ and θ affect optimal efforts only via κ̃ = κ/θ. A lower ownership share θ

effectively implies a lower benefit of effort for the activist, reducing effort a. Under passive

ownership (i.e. as θ → 0), we have limθ→0 a(θ) = 0 and limθ→0m(θ) = Λ∆
ϕ
.

To obtain the activist’s valuation of an additional unit of stock, we can differentiate both

sides of (11) and use P (θ) = V ′(θ). This yields:

(ρ+ Λ)P (θ) = µ− π − c+ Λ
[
V D + (a+m)(∆−B)

]
− θ

(
∂c

∂a

∂a

∂θ

)
. (16)

The term
(
∂c
∂a

∂a
∂θ

)
captures how an additional unit of firm ownership affects managerial flow

payouts through effort incentives a. Crucially, −θ
(
∂c
∂a

∂a
∂θ

)
= ϕm(Λ∆−ϕm)

κ̃
= Λ2∆2ϕ

(ϕ+κ̃)2
is positive.17

As θ increases, the activist exerts more effort and increases the chance of successful transition

17Combining (8) and (10) yields c = −ϕm2

2 − ϕam, so ∂c
∂a = −ϕm. From (9), we obtain ∂a

∂θ = Λ(∆−B)
κ =

Λ(∆−ϕm/Λ)
κ , and θ · ∂a

∂θ = Λ(∆−ϕm/Λ)
κ̃ . Using (14), we get −θ

(
∂c
∂a

∂a
∂θ

)
=
(

Λ∆
ϕ+κ̃

)(
Λ∆− Λκ̃∆

ϕ+κ̃

)
= Λ2∆2ϕ

(ϕ+κ̃)2 .
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and of payment of the manager’s compensation B. Thus, an increase in θ and a, all else

equal, lowers the required flow payouts c, which are set such that the manager breaks even.

Intuitively, a higher activist stake θ implies more efficient contracting with the manager,

which increases the activist’s valuation of an additional unit of stock V ′(θ) in (16).

In addition to satisfying (16), P (θ) satisfies the pricing equation of passive investors

(ρ+ Λ)P (θ) = µ− c+ Λ
[
V D + (a+m)(∆−B)

]
+ P ′(θ)θ̇. (17)

where P (θ) increases with θ, i.e., P ′(θ) > 0. Combining (16) and (17) yields

θ̇ =
1

P ′(θ)

[
−π − θ

(
∂c

∂a

∂a

∂θ

)]
. (18)

The trading rate in (18) is determined by two opposing effects and can be positive or negative.

First, there are gains from buying a larger stake, as this makes contracting with the manager

more efficient. Second, there are gains from selling shares, because the activist values the

firm less due to the flow holding cost π. Expression (A.19) presents a closed-form expression

for the trading rate. As we show, provided
√
ϕπ < ∆Λ, there exists an endogenous level18

θC =
κ
√
π√

ϕ(∆Λ−
√
ϕπ)

. (19)

at which θ̇ = 0 so that θ̇ < 0 (θ̇ > 0) whenever θ lies in the smooth trading region and

θ < θC (θ > θC). The trading rate θ̇ decreases with the activist’s disutility from investing

in a dirty firm, as captured by π, and is negative for larger values of π.

To avoid studying degenerate cases, we assume in what follows that the smooth trading

region is non-empty; Appendix F.3 characterizes the activist’s optimal trading when the

smooth trading region is empty. The smooth trading region (θ, θ) is characterized by two

thresholds θ < θ, available in closed-form in Appendix A.3.2. To solve for θ and θ, let P y

denote the price of the firm if the activist’s ownership stake θ perpetually equals y ∈ {0, 1}.

One can show that once θ reaches y ∈ {0, 1} after time t = 0, the activist stops trading, so

the price indeed equals P y.19

18When
√
ϕπ ≥ ∆Λ, θC is not well-defined from (19), and θ̇ < 0 in the entire smooth trading region.

When θC ≤ 0 (respectively θC ≥ 1), θ̇ > 0 (respectively θ̇ < 0) in the entire smooth trading region.
19Importantly, the state θ = 0 is absorbing if reached after time t = 0, i.e., post-entry. At the onset
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Once θ reaches θ (from below), the activist is indifferent and randomizes between not

trading at all (i.e., θ̇ = 0) and buying the entire firm, i.e., the remaining 1− θ units of stock,

at price P 1. The threshold θ satisfies θ = inf{θ ∈ [0, 1] : V̂ (θ) = V (1) − (1 − θ)P 1} and

the trading intensity ξ at which the activist buys the entire firm is determined such that the

price level equals P (θ) = V̂ ′(θ). Then, θ remains constant at θ until it jumps to one. For

θ ∈ (θ, 1), the activist immediately buys the entire firm, i.e., dθ = 1− θ.20

Once θ reaches θ (from above), the activist is indifferent and randomizes between not

trading at all and selling its entire stake at price P 0. Then, θ remains constant at θ until

it jumps to zero. The threshold θ satisfies θ = sup{θ ∈ [0, 1] : V̂ (θ) = θP 0} and the rate ξ

at which the activist exits is such that P (θ) = V̂ ′(θ); Appendix A.3.5 presents closed-form

expressions for ξ and ξ. For θ ∈ (0, θ), the activist immediately exits, i.e., dθ = −θ.

Consequently, starting from a stake θ0 = θTβ , the activist’s stake remains constant if

θ0 = θC , the activist eventually exits the firm in that limt→∞ θt = 0 if θ0 < max{θC , θ},

and the activist eventually acquires the entire firm in that limt→∞ θt = 1 if θ0 > min{θC , θ}.

Proposition 2 summarizes the model solution after T β.

Proposition 2 (Trading, Effort, and Firm Value). After time T β, the following holds:

1. The activist’s value function satisfies V (θ) = θP 0 for θ ∈ [0, θ), V (θ) = V̂ (θ) for

θ ∈ [θ, θ], and V (θ) = V (1)− (1−θ)P 1 for θ ∈ (θ, 1]. Efforts are characterized in (14).

2. The stock price satisfies P (θ) = V ′(θ) in all states θ where V (θ) is differentiable. Thus,

P (θ) = V̂ ′(θ) for θ ∈ [θ, θ], P (θ) = P 0 for θ ∈ [0, θ), and P (θ) = P 1 for θ ∈ (θ, 1].

3. For θ ∈ (θ, θ), the activist trades smoothly, in that dθ = θ̇dt with θ̇ from (18). At θ = θ,

when θ̇ > 0 in a left-neighbourhood of θ, we have dθt = (1− θ)dN t, where dN t ∈ {0, 1}

is a jump process with intensity ξ. At θ = θ, when θ̇ < 0 in a right-neighbourhood of

at time t = 0, the activist starts out with zero ownership but may buy an initial ownership stake θ0 > 0,
because the initial trade is at favorable terms and therefore fundamentally different from post-entry trading
after time T β . When the activist chooses its initial stake θ0 at t = 0, it can acquire part of this initial stake
at a discount (i.e., below post-entry market price). In contrast, after time T β (i.e., post-entry), the activist
always trades at the fair market price.

20This is reminiscent of the trading strategies of Michael Dell with Dell Inc or Elon Musk with Twitter,
where both investors were holding a large stake in the target firms before buying the whole equity and taking
the firms private to implement significant strategic changes.
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θ, we have dθt = −θdN t, where dN t ∈ {0, 1} is a jump process with intensity ξ.21 For

θ ∈ [0, θ), dθ = −θ. For θ ∈ (θ, 1], dθ = (1− θ). The activist stops trading once θ = 0

or θ = 1. Finally, there exists θmin > 0 such that θt ̸∈ (0, θmin) for all t ≥ 0.

2.3.2 Solution for t ∈ (0, T β)

Before time T β, the activist cannot trade and its value function is a weighted average of the

payoff absent any trading opportunities V̂ (θ) and with trading opportunities V (θ), in that

V β(θ) =
(Λ + ρ)V̂ (θ) + βV (θ)

Λ + ρ+ β
. (20)

For θ ∈ [θ, θ], we have V̂ (θ) = V (θ), so V β(θ) = V (θ). However, for θ < θ or θ > θ, the

activist would strictly prefer to trade if it could, so that V (θ) > V β(θ). Likewise, the stock

price satisfies

P β(θ) =
µ− c+ Λ

[
V D + (a+m)(∆−B)

]
+ βP (θ)

Λ + ρ+ β
. (21)

Importantly, efforts a(θ) and m(θ) only depend on θ and not on whether the activist can

trade and are characterized in (14). We conclude with the following proposition.

Proposition 3. Over (0, T β), the activist’s value function satisfies (20), the stock price

satisfies (21), and efforts are given in (14).

2.3.3 Activist Entry and the Free-Rider Problem

The activist improves firm value through private and costly effort. However, if this value

creation is fully reflected in the price at which it can acquire a stake, the activist cannot

capture the gains from activism and thus has no incentive to acquire a stake in the first place.

The severity of this free-rider problem is captured by the difference between the activist’s

valuation of a unit of firm ownership, V β(θ0)/θ0, and the passive investors’ valuation of a

unit of firm ownership, P β(θ0). To gain some intuition, suppose that the activist acquires the

minimum required stake θ0 = θ̃0. In this case, entry is profitable (relative to not entering) if

21When θ̇ < 0 (θ̇ > 0) in a left-neighbourhood of θ (right-neighbourhood of θ), no time is spent in state θ
(θ) and θ moves immediately back into the smooth trading region (θ, θ) from θ (θ).
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and only if V β(θ0)−K(θ0) ≥ R which we can rewrite using (5) as

(1− η)
[
V β(θ0)/θ0 − P 0

]
+ η
[
V β(θ0)/θ0 − P β(θ0)

]
≥ R/θ0,

The term V β(θ0)/θ0 − P 0 captures value creation from activism of which the activist can

capture a fraction 1− η. The term η
[
V β(θ0)/θ0 − P β(θ0)

]
quantifies the free rider problem,

which gets more severe as η increases. Proposition 4 characterizes activist entry.

Proposition 4 (Activist Entry). The activist enters if and only if (6) holds, i.e. E(θ0) ≥ R,

with an initial stake given by θ0 = argmaxθ∈[θ̃0,1]
[
V β(θ)−K(θ)

]
. When the free-rider problem

is sufficiently severe in that

η ≥ κ(κ+ ϕ)

ϕ2 + 3κϕ+ κ
, (22)

the activist buys the minimum stake, so that θ0 = θ̃0. For θ0 ≤ θ, the entry condition can be

written as

F︸︷︷︸
Financial
payoff

+ U︸︷︷︸
Non-pecuniary

payoff

≥ 0. (23)

1. When θ0 = θ ∈ [θ, θ], then with R̃ = R/θ and η̃ = θ0−θ̃0+ηθ̃0
θ0

we have that F = F̂ (θ; β) ≡

χ∆2 for

χ :=

(
ϕΛ2

2(ρ+ Λ)κ̃(ϕ+ κ̃)2

)(
κ̃(1− η̃) + ϕ(1− 2η̃)− 2βκ̃η̃

Λ + ρ+ β

)
, (24)

and

U = Û(θ; β) := −R̃− π

Λ + ρ

(
1− βη̃

Λ + ρ+ β

)
. (25)

2. When θ0 = θ ∈ [0, θ), then F = (Λ+ρ)F̂ (θ,0)
Λ+ρ+β

and U = −R̃− π
Λ+ρ+β

.

Condition (23) states that the activist enters at t = 0 as long as the sum of financial

payoff F and the sustainability preferences-related payoff U is positive.22 We refer to the

sustainability preferences-related payoff component U as non-pecuniary payoff, because the

activist’s (non-pecuniary) sustainability preferences—as quantified by π and R—only affect

the activist’s payoff and incentives to enter via U .23 The non-pecuniary payoff U consists of

22The entry condition for θ0 > θ is in closed form too, but less intuitive and thus omitted.
23That is, π and R affect the activist’s payoff only via U in the entry condition.
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two components: (i) the effective net “utility” −R from entering at t = 0, reflecting the ac-

tivist’s broad impact preferences, and (ii) the activist’s disutility from owning the (dirty) firm

over [0, T ], which may reflect sustainability preferences in a narrow sense (“value-alignment

preferences”). Narrow sustainability preferences, as captured by higher π, discourage entry

by decreasing U , but broad impact preferences as captured by lower R encourage entry by

increasing U . We say that the activist follows a broad impact mandate when U > 0, in which

case it may be willing to invest in the firm despite a financial loss. Appendix F.5 provides a

micro-foundation for R < 0 and thus for U > 0.

3 Model Analysis

Three core economic mechanisms shape the dynamics of activism and green transition within

our framework. First, in any state θ, incentive provision and optimal efforts are subject to

a double-agency problem. Second, the activist may dynamically trade and adjust its stake

after entry, affecting effort and the transition rate. Third, a free-rider problem determines

the activist’s incentives to invest in the firm. In the following, we discuss how these mecha-

nisms interact and affect activism and the green transition. Unless otherwise mentioned, we

consider that θ0 ∈ (θ, θ) with 0 < θ0 < 1, leading to non-trivial trading dynamics after T β.

3.1 Does Activism Foster the Green Transition?

While activism fosters the green transition under first best, it introduces a double-agency

problem that distorts effort incentives under moral hazard. Notably, the activist’s incentives

to exert effort are reduced relative to the first-best case as the activist only captures part

of the gains from effort while incurring the full private cost. As shown by (9), this is for

two reasons. First, the activist only owns a fraction θ ≤ 1 of the firm. Second, part of the

transition surplus accrues to the manager as part of the incentive contract. As a result, effort

incentives provided to the manager reduce the activist’s effort. Due to the double agency

problem, efforts a and m endogenously arise as substitutes, and lie below first-best efforts.

Increasing m requires a higher compensation B, thus lowering a, and vice versa.

Interestingly, this double-agency problem can be so severe that more activism, i.e., higher

θ and lower κ̃, can reduce overall effort a+m. In particular, under passive ownership, that is,
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θ → 0 and limθ→0 λ = λP = Λ2∆
ϕ

, the transition rate λ is larger than under active ownership

with θ > 0, when κ is large. Thus, activism increases the green transition rate if and only if

the activist’s cost of effort κ is small relative to that of the manager and its stake is large.

Likewise, the transition rate increases in the extent of activism, in that ∂λ
∂θ

> 0, if θ is large

and κ is small relative to ϕ. A sufficient condition for ∂λ
∂θ

> 0 is θ > κ
ϕ
.

The following Proposition formalizes these results.

Proposition 5 (Double-agency and effort choice). The following holds:

1. The manager’s effort m increases in κ and decreases in θ while the activist’s effort a

decreases in κ and increases in θ.

2. Activism increases the transition rate relative to passive ownership, i.e., λ(θ) > λP , if

and only if θ > κ
ϕ
.

3. The transition rate λ(θ) increases in the stake of the activist if and only if θ > κ(
√
2−1)
ϕ

.

The following Corollary generalizes our results by characterizing the effect of activism on

the average transition rate λ0 which accounts for dynamics of activist stake and is defined

via

λt = ETβ

t

[∫ ∞

t

e−Λ(u−t)Λλudu

]
. (26)

where we integrated out the random time T and the expectation ETβ

t is taken at time t with

respect to the random time T β. The details on how to compute λt are deferred to Appendix

F.1. For β = 0, we have λ0 = λ(θ0). Under passive ownership θt = 0 for all t ≥ 0 and we

have λ0 = λP = Λ2∆
ϕ

.

Corollary 1 (Good Activism and Bad Activism). Suppose that the activist enters at time

t = 0. The following holds:

1. Activism improves the average transition rate (relative to passive ownership), in that

λ0 > limκ̃→∞ λ0 = λP , if (i) κ < ϕ and (ii) θt >
κ
ϕ
whenever θt > 0.

2. Activism reduces the average transition rate, in that λ0 < λP , if ϕ ≤ κ.

The key takeaway is that skilled or good activists (characterized by low κ) stimulate

green transition, whereas less skilled or bad activists (characterized by large κ) hamper

green transition.
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3.2 The Dynamics of Activism

After time T β, the activist dynamically trades the firm’s stock, so that θ, κ̃, and efforts a and

m vary over time. Crucially, the activist may buy or sell the firm’s stock and the size of the

activist’s initial stake θ0 relative to the thresholds θ
C from (19) and θ from (A.10) determines

whether the activist accumulates a larger stake or gradually exits after entry. In particular,

the activist divests its stake after entry and eventually exits the firm if θ0 < max{θC , θ}. By

contrast, it accumulates a larger stake over time and eventually acquires the entire firm if

θ0 > min{θC , θ}. As θC and θ increase with κ and π, the activist exhibits a higher propensity

to exit when its cost of effort κ or its disutility flow π are large, whereas it accumulates a

larger stake when κ and π are small.

As a result, when κ is low, λ increases in θ (see Proposition 5) and the activist accumulates

a larger stake after entry, causing its effort and the overall transition rate to increase over

time. On the other hand, when κ is high, the activist divests its stake over time and exits,

while activism is detrimental to green transition. In this case, the overall transition rate

tends to decrease with θ and increases over time, as the activist gradually divests.

Importantly, κ also affects the activist’s entry decision. An increase in κ implies lower

activist effort, which alleviates the free-rider problem. However, higher κ also limits value

creation from activism. For instance, the entry condition (23) implies that when β is suffi-

ciently small and U is either positive or not too negative, an increase in κ encourages entry.24

Under these circumstances, less skilled activists exhibit both a higher propensity to enter

and to exit. Skilled activists, on the other hand, are less willing to enter but, conditional on

entry, stay invested longer in the firm, take more control, and exert more effort for impact.

Why does an activist enter in the first place, if it finds it optimal to exit after entry?

The main reason is that at the time of entry, the activist can acquire an ownership stake at

favorable terms, specifically at a price lower than the firm’s stock price post-entry. Therefore,

it can be optimal for the activist to initially enter the firm by buying the firm’s stock (at

relatively low price) and to gradually exit the firm by selling its stock right after entry (at

relatively high price), effectively “buying low and selling high.”

24When θ0 = θ̃0 ∈ (θ, θ) (so η = η̃) and χ̂ := κ̃0(1 − η) + ϕ(1 − 2η) − 2βκ̃0η
Λ+ρ+β > 0, the activist enters if

U ≥ 0 or U < 0 is sufficiently close to zero. The claims follows from ∂χ̂
∂κ̃0

> 0 if and only if η < Λ+ρ+β
Λ+ρ+3β , or

equivalently β(3η − 1) < (Λ + ρ)(1− η). The claim can be generalized for case θ0 ̸= θ̃0.
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3.3 The Effects of Dynamic Trading on Green Transition

Dynamic trading not only changes optimal efforts but also shapes the activist’s entry decision

by affecting the post-entry stock price P β(θ0), as the following corollary shows.

Corollary 2. Suppose θ0 ∈ (θ, θ). An increase in β tightens (loosens) the entry condition

(23) if θ̃0 > θC (if θ̃0 < θC), in that sgn
(

∂E(θ0)
∂β

)
= sgn(θC − θ̃0).

When θ0 > θC , the activist gradually accumulates a larger stake after T β, which implies

that the stock price appreciates over time. This leads to a higher initial (post-entry) price

and to a more severe free-rider problem that hampers activist entry (by tightening (23)).

As a result, when θ0 > θC , more frequent trading discourages activist entry. When θ0 < θC ,

the activist gradually divests after T β, causing the stock price to decrease over time. This

implies a lower post-entry price and alleviates the free-rider problem at entry. Overall, entry

and exit are complementary. By allowing the activist to divest and exit the firm, trading

opportunities provide incentives to the activist to enter in the first place.

Better trading opportunities, i.e., an increase in β, thus curb the entry incentives of

skilled activists characterized by low κ and θC , while stimulating entry by less skilled activists

characterized by larger κ and θC . According to our previous findings, less skilled activists also

exhibit higher propensity to exit, whereas relatively more skilled activists acquire a larger

stake and more control over time. Taken together, these findings suggest that activists in

(low β) private markets tend to (i) exert more effort, (ii) hold larger stakes, (iii) have more

skill, and (iv) are more likely to affect firm outcomes.

Figure 2 shows that depending on whether κ is large relative to ϕ, better trading oppor-

tunities may increase or decrease the extent of activism and the rate of transition. In the

upper two panels, activism is beneficial for green transition, i.e., λ0 > λP and κ is small

relative to ϕ. Better trading opportunities then allow the activist to accumulate a larger

stake after entry, which boosts transition, but also reduce the activist’s incentives to enter.

In particular, F + U decreases with β (see Panel A) and the activist does not enter for

β > β∗, leading to a drop in the transition rate at β∗. In the lower two panels activism

hampers transition, i.e., λ0 < λP . Here, κ is large relative to ϕ and the activist gradually

exits after entry. Better trading opportunities speed up exit, which raises transition rate but

also encourages entry, in that the activist enters when β > β∗ (Panel C). Raising β beyond
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Figure 2: Comparative statics with respect to β. The relevant parameters are ∆ = 1, Λ = 1,
κ = 1, β = 1, ρ = 0.05, and θ̃0 = 0.5. The upper two panels A and B use ϕ = 5, η = 0.75, π = 0.05, and
U = 0.08. The lower two panels C and D use ϕ = 1.4, η = 0.25, π = 0.15, and U = −0.048.

β∗ then reduces transition rate, as it incentivizes the high-κ activist to enter (Panel D).

4 Carbon Taxation and the Green Transition

4.1 Carbon Taxation and Incentives

On an intuitive level, the surplus ∆ from a successful transition should reflect both (i) the

green preferences of investors and consumers and (ii) the effects of carbon taxation or cap

and trade schemes. To see this, suppose that the firm produces gross cash flows at rate µ.

However, unlike a clean firm, a polluting firm incurs additional costs of production via carbon

taxes or emission certificates of ρτC per unit of time, where τC is the regulator’s choice and

can be seen as the (scaled) tax rate. Then, the net cash flow of the firm is µ− ρτC when it

operates a polluting technology. Cash flows equal dividends in our setting, and all investors

have discount rate ρ. Thus, after time T , the (purely financial) market values of clean and

dirty firms are respectively V C = µ
ρ
and V D = µ−ρτC−ρπC

ρ
= V C − τC − πC ,25 where πCρ ≥ 0

25πC is the disutility of equity investors in general (not necessarily the activist from holding dirty stocks),
whereas π is the difference in activist’s and passive investors’ disutility from holding dirty stocks. In that
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is the disutility flow that equity investors derive from holding the stock of a dirty firm. As

a result, we can write ∆ = τC + πC , which is the sum of carbon tax and a greenium πC .

Likewise, a preference for clean products by consumers would raise V C and ∆. In sum, we

can interpret carbon taxes, carbon price (in a cap and trade scheme), and preferences for

green firms as increasing ∆. In particular, when setting the tax rate τC , the regulator pins

down ∆, in that ∆ is a monotonic transformation of the tax rate τC and vice versa.

Raising the carbon tax and thus ∆ affects (i) effort incentives, (ii) dynamic trading, and

(iii) entry, and as a result the average transition rate λ0 = λ0(∆). First, for any level of

the activist stake θ, higher ∆ increases the incentives to transition to a clean technology,

raising both the activist’s and manager’s efforts and transition rate; see (14). Second, as

the following Corollary shows, higher carbon taxes and ∆ increase the activist’s trading rate

and reduce its incentives to exit after entry, thereby increasing the extent of activism.

Corollary 3. When π > 0, ∂θ̇
∂∆

> 0 (in the smooth trading region), ∂θC

∂∆
< 0, and ∂θ

∂∆
< 0

(provided that θ ∈ (0, 1)).

Third, to understand the effect of ∆ on activist entry, we write F = χ∆2 in (23) where

χ—defined in equation (24)—decreases with η and captures the severity of the free-rider

problem.26 Higher ∆ implies higher effort by the activist, raising both the value created

from activism and the severity of the free rider problem. When χ > 0 and activism generates

a financial gain, an increase in ∆ raises the comparative advantage of the activist and the

value created through activism, thus stimulating entry. On the other hand, when χ < 0, an

increase in ∆ raises the free-rider problem more than the value created through activism,

thereby discouraging activist entry. In this case, regulation aiming at stimulating green

transition has to resolve the trade-off between addressing the double agency problem by

raising taxes and mitigating the free rider problem by lowering taxes.

Because an increase in ∆ increases the transition rate λ(θ) and the trading rate for any

given stake θ, we expect the average transition rate λ0 = λ0(∆) to increase with ∆ (a

sufficient condition is that κ is sufficiently low).27 Likewise, under passive ownership, the

regard, the activist’s disutility is πC + π, while other equity investors’ disutility is πC .
26One can use the entry condition (23) evaluated at θ = θ0 to get a closed-form expression for χ = χ(θ),
27A sufficient condition for λ

′
0(∆) > 0 is that θ0 ≥ θC ≥ θ and θ0 > κ(

√
2−1
ϕ . Then, the activist gradually

acquires a larger stake in the firm after entry and a higher stake increases λ(θ) (see Proposition 5). These
conditions are met when κ is sufficiently small and the activist is “good.”
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average transition rate λP = Λ2∆
ϕ

increases with ∆.

However, an increase in ∆ can actually decrease the average transition rate when it affects

the activist’s entry decision. For this sake, note that the activist never enters if both χ and

U are (strictly) negative and always enters when χ, U ≥ 0. The following Proposition shows

that carbon taxation can reduce the green transition rate by discouraging entry by good

(low κ) activists or encouraging entry by bad (high κ) activists.

Proposition 6 (Carbon taxes). Suppose θ0 = θ̃0 ∈ (θ, θ). For χ < 0 ≤ U or U ≤ 0 < χ, the

entry condition (23) binds for ∆ = ∆E :=
√

−U
χ

≥ 0. Suppose ∆E ∈ (0,∆). The average

transition rate λ0 = λ0(∆) exhibits a downward jump at ∆ = ∆E, in that lim∆↑∆E λ0(∆) >

lim∆↓∆E λ0(∆), in the following two scenarios.

1. Carbon taxation hampers activist entry, in that χ < 0 < U , and activism benefits green

transition, in that lim∆↑∆E λ0(∆) > λP .

2. Carbon taxation encourages activist entry, in that χ > 0 > U , and activism hampers

green transition, in that lim∆↑∆E λ0(∆) < λP .

Provided that λ0(∆) increases with ∆ for ∆ ̸= ∆E, cases 1. and 2. from Proposition 6

describe the only circumstances in which an increase in ∆ reduces green transition rate λ0(∆).

That is, an increase in carbon tax generally boosts green transition, unless it affects activist

entry and discourages (encourages) good (bad) activists to enter. Sufficient conditions for

λ0(∆) ≷ λP are provided in Corollary 1. Also note that in the limit case β = 0, the above

statements simplify, as λ0(∆) > λP if and only if κ̃ < ϕ. Importantly, the sign of χ is related

to whether κ is large relative to ϕ, i.e., whether activism fosters green transition. To see

this, note that when η > 1/2 and β(3η − 1) < (Λ + ρ)(1 − η), then χ is negative for low κ

values and positive for high κ values.28

Figure 3 provides a graphical illustration of the findings of Proposition 6, with Panels A

and B depicting case 1 and Panels C and D depicting case 2. In case 1, activism is beneficial

for green transition (i.e., κ is low relative to ϕ) and an increase in ∆ reduces entry incentives

28When θ0 = θ̃0 ∈ (θ, θ) (so η = η̃), the sign of χ is determined by χ̂ := κ̃0(1 − η) + ϕ(1 − 2η) − 2βκ̃0η
Λ+ρ+β .

We have ∂χ̂
∂κ̃0

> 0 if and only if η < Λ+ρ+β
Λ+ρ+3β , or equivalently β(3η− 1) < (Λ+ ρ)(1− η). As η > 1/2, we have

χ̂ < 0 if κ̃0 ∝ κ = 0. As χ̂ increases with κ̃0 and thus κ, it follows that χ̂ < 0 if κ is sufficiently small, and
χ̂ > 0 if κ is sufficiently large.
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Figure 3: Carbon taxes and clean transformation. Parameters are set to Λ = 1, κ = 1, β = 1,
ρ = 0.05, π = 0.05, and θ̃0 = 0.5. Panels A and B illustrate case 1 of Proposition 6 with ϕ = 5, η = 0.75,
and U = 0.1. Panels C and D illustrate case 2 of Proposition 6 with ϕ = 1.4, η = 0.25 and U = −0.075.

since χ < 0. Thus, raising ∆ beyond ∆E precludes activist entry, causing a downward jump

in the transition rate at ∆E (see Panel B). In case 2 and Panel C, activism is detrimental

to green transition (i.e., κ is large relative to ϕ) and an increase in ∆ encourages entry, i.e.,

χ > 0. As shown in Panel D, raising ∆ beyond ∆E induces activist entry and, because

activism reduces transition rate relative to passive ownership, leads to a downward jump of

transition rate at ∆E.

4.2 Optimal Taxation and Pigouvian Tax

To study optimal taxation, we add more structure to the baseline model by assuming that a

dirty firm generates a flow social cost of πSρ > 0 (e.g., via its production), while the social

cost of a clean firm is normalized to zero. Unlike the manager and investors, the regula-

tor/policymaker/government internalizes this social cost and sets taxes (i.e., determines ∆)

to minimize the sum of social cost and the cost of transformation given by

G := E
[∫ ∞

0

e−ρt

(
πSρIt +

κa2t + ϕm2
t

2

)
dt

]
. (27)
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In (27), It is an indicator that equals one if the firm is dirty and zero if the firm is clean at

time t. For symmetry, the regulator discounts at rate ρ. Appendix F.2 shows how to compute

G. Recall that, as argued in Section 4.1, choosing ∆ is akin to setting carbon tax rate.29 We

now solve for the optimal level of ∆ ∈ [0,∆] which minimizes G, i.e., ∆G := min∆∈[0,∆] G.

We assume that parameters are such that ∆G is interior, i.e., ∆G ∈ (0,∆). With some

slight abuse of notation, when the activist’s entry condition (23) binds and the activist is

indifferent between entering and not entering, we break ties in favor of and pick the outcome

(i.e., activist entry or not) that leads to lower G (given ∆).30

The following proposition analyzes the “Pigouvian” benchmark under first best.

Proposition 7. In first-best with optimal efforts aFB = Λ∆
κ

and mFB = Λ∆
ϕ
, ∆G = πS.

From time T onward, the firm’s (discounted) cumulative social cost equals πS if the firm

remains dirty and 0 if the firm becomes green (“success”) at time T . Thus, the reduction

in total social cost and gain in social surplus is πS if transition succeeds at time T relative

to failure. Proposition 7 establishes that in first-best, investors should fully internalize the

reduction in social cost associated with successful transition, leading to ∆G = ∆ = πS.

Setting ∆G = πS is akin to setting a Pigouvian tax that makes investors fully internalize the

firm’s social cost and, as such, the social surplus gain associated with a successful transition.

We now analyze optimal taxation with double agency and endogenous activism. For this

sake, we focus on the most interesting and practically relevant case, namely, that activism

is sufficiently beneficial in that κ is low. As such, we consider that the regulator minimizes

G while incentivizing the activist to enter, in that it solves ∆G := min∆∈[0,∆] G subject to

(6). The following proposition shows that when the activist’s (intrinsic) entry incentives are

strong and (6) does not bind, for instance, because the activist has a broad impact mandate

(i.e., internalizes part of the social cost as captured in reduced form by large U), then the

tax rate lies above the Pigouvian tax (for β = 0).

29According to Section 4.1, one could micro-found ∆ = τC + πC , where ρτC is the carbon tax (in dollars)
and πC reflects investors’ preferences (“greenium”). Thus, ∆ then pins down the level of the carbon tax, in
that ∆ is a monotonic transformation of the carbon tax (and vice versa).

30This assumption is needed to ensure the existence of a solution to the minimization problem. To see
why, take the scenario of Figure 3 Panel D and suppose we are looking for the level of ∆ that maximizes
λ0(∆). In Panel D, the average transition rate has no maximum when the activist enters when ∆ ≥ ∆E . On
the other hand, the average transition rate is maximized for ∆ = ∆E if we assumed that the activist enters
only if ∆ > ∆E . This argument extends to the minimization of G: To ensure that this minimization has a
solution, we “pick” the equilibrium ownership (passive vs. active) yielding lower G when ∆ = ∆E .
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Figure 4: Optimal Tax and Trading. Parameters are set to Λ = 1, κ = 1, β = 1, ρ = 0.05,
π = 0.05, θ̃ = 0.5, ϕ = 5, η = 0.75, U = 0.1, and πS = 0.5. Panel A plots the optimal tax ∆G that minimizes
G and Panel B plots the threshold ∆E above which the activist does not enter. As argued in Section 4.1, ∆
is a montonic transformation of the carbon tax, so increasing ∆ is akin to raising carbon tax. The parameter
choice follows Figure 3; the qualitative patterns are robust to the choice of these parameters.

Proposition 8 (Incentivizing effort through carbon taxation). Suppose θ0 = θ = θ̃ and

β = 0. Then ∆G = ∆G
∗ := πS

(
(ϕ2+κ̃2)(ϕ+κ̃)

θϕ3+κ̃3

)
> πS when (6) holds for ∆ = ∆G

∗ .

By continuity, the proposition’s statements and the ones of the proposition below also

apply when β is sufficiently small. Thus, when taxation is not constrained by the activist’s

entry condition and β ≈ 0, taxation solely needs to deal with the double agency problem. As

the double agency problem leads to efforts that are lower than first best efforts, the regulator

raises the tax rate above the Pigouvian benchmark to increase efforts.

Next, recall that while an increase in carbon taxes raises the transition rate conditional

on activist entry, it also discourages activist entry. In particular, Proposition 6 shows that

when activism is associated with financial losses (i.e., χ < 0 ≤ U), the activist enters only if

∆ ≤ ∆E =
√

U
−χ

. That is, to incentivize beneficial activism, the carbon tax must not be too

high. The following proposition demonstrates that under these circumstances, the optimal

tax lies below the Pigouvian tax when ∆E < πS, i.e., for low U or large −χ.

Proposition 9 (Endogenous entry and optimal carbon taxation). Suppose β = 0 and θ0 =

θ̃0 ∈ (θ, θ). When χ < 0 ≤ U , ∆G = min{∆E,∆G
∗ }.

Next, we show that when activism is beneficial for the green transition (i.e., κ is low) but

subject to financial losses (i.e., χ < 0 ≤ U), the optimal carbon tax should decrease with

the ease of trading (β). When κ is low, the activist gradually acquires a larger stake after

entry. Conditional on entry, more frequent trading opportunities increase the activist’s stake
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dynamically, alleviating the double agency problem. As the regulator raises the tax above

the Pigouvian benchmark to address double agency, more frequent trading opportunities

and thus less severe double agency reduce the optimal tax. In addition, because activism

is subject to a financial loss, an increase in ∆ discourages entry and the activist enters if

and only if ∆ ≤ ∆E. Because ∆E decreases with β, more frequent trading opportunities

discourage entry too. As a result, better trading opportunities may require lower taxes

to incentivize activist entry in the first place. The following proposition formalizes these

insights for π = 0, bearing in mind that the results also apply when π is not too large.

Proposition 10. Suppose that π = 0, that Λ > 0 is sufficiently small, and χ < 0 ≤ U .

When θ0 = θ̃0 ∈ (θ, θ) and θ0 > κ/ϕ, then ∆G and ∆E =
√

U
−χ

decrease with β.

Figure 4 graphically illustrates that the optimal tax rate ∆G and the threshold ∆E

decrease with the frequency of trading opportunities β, when activism is beneficial (i.e., κ

is low relative to ϕ) but associated with financial losses (i.e., χ < 0 < U). In the numerical

example of Figure 4, we have ∆G > πS, i.e., the optimal carbon tax is above the Pigouvian

tax and the constraint (6) only binds for β ≈ 0. Thus, for larger values of β, the regulator

can set the tax without having to consider the activist’s entry incentives.

5 The Pitfalls of Green Investment Subsidies

Policymakers often subsidize green capital investment; for instance, a firm may receive direct

subsidies or a tax advantage for investing in transformation. An illustrative instance of this

is the Investment Tax Credit (ITC), which is offered under the Inflation Reduction Act to

encourage green investments in the United States.31 As utility is in monetary terms and there

are no capital constraints, we can without loss of generality interpret the managerial costs

of effort as monetary investment costs at the firm level, while effort represents investment.

A firm-level subsidy s will be based on the anticipated (or contracted) effort m̂t, which may

differ from actual effort mt upon deviation. In optimum, we have mt = m̂t. A subsidy

implies a transfer to the firm proportional to the cost of effort, i.e., the firm-level subsidy

31Likewise, in the European Union and, notably Germany, firms may receive tax credits or subsidies for
transforming their production toward sustainability, for instance, by reducing carbon emissions.
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raises firm cash flows by
sϕm̂2

t

2
. That is, a fraction s ∈ [0, s] of the investment costs are

subsidized. To ensure optimal interior effort, we stipulate s < min{1, ϕ
κ
}.

With the investment subsidy, the activist’s value function becomes

Vt = max
(au,cu,Bu)u≥t

Et

[ ∫ T

t

e−ρ(u−t)

(
θu

(
µ− π +

ϕsm̂2
u

2
− cu

)
du− κa2u

2
du− dθu(Pu + dPu)

)
+ θT

[
V D + (aT +mT )(∆−BT )

]]
, (28)

while the firm’s stock price under active ownership becomes

Pt = Et

[∫ T

t

e−ρ(u−t)

(
µ+

ϕsm̂2
u

2
− cu

)
du+ e−ρT

[
V D + (aT +mT )(∆−BT )

]]
. (29)

The value function/firm value under passive ownership satisfies P 0
t = limκ̃→∞,π→0 Vt/θt.

A subsidy based on anticipated effort (ât, m̂t) does not change the incentive constraints

(8) and (9), because these are derived by considering deviations from anticipated levels, and

subsidies are not based on actual effort levels and in particular do not condition on deviations

from anticipated levels. That is, the activist and the manager take the subsidy as given when

choosing actual efforts at and mt. The incentive constraints (8) and (9) ensure ât = at and

m̂t = mt. Contracted payouts to the manager take the form in (10). However, the subsidies

affect optimal contracting with the manager as well as the activist’s dynamic trading and

entry. The following proposition summarizes the outcomes relevant to the analysis.

Proposition 11. With investment subsidies s ∈ [0, s] for s < min{1, ϕ
κ
}, optimal effort is

a = a(θ) =
∆Λ (ϕ− κ̃ s)

ϕκ̃ (κ̃(1− s) + ϕ)
and m = m(θ) =

∆Λ κ̃

ϕκ̃ (κ̃(1− s) + ϕ)
. (30)

The transition rate λ = Λ(a + m) satisfies sgn
(
∂λ
∂s

)
= sgn(κ̃ − ϕ). Activism increases λ if

and only if ϕ(1− s) > κ̃(1 + s+ s2), and otherwise reduces λ. The activist enters at t = 0 if

and only (23) holds. In case, θ0 = θ ≤ θ, the entry condition simplifies to F + U ≥ 0 where
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1. When θ0 = θ ∈ [θ, θ], then with R̃ = R/θ and η̃ = θ0−θ̃0+ηθ̃0
θ0

, we have F = F̂ (θ̃; β) for

F̂ (θ̃; β) := ∆2

(
Λ2(ϕ− κ̃s)2

2κ̃ϕ(ρ+ Λ)
[
ϕ+ κ̃(1− s)

]2
)[

(1− η̃)κ̃(1− s) + (1− 2η̃)ϕ− T (θ̃; β)
]

︸ ︷︷ ︸
=χs

T (θ; β) :=
2βη̃κ̃ϕ

(Λ + ρ+ β)(ϕ− κ̃s)
; U = Û(θ̃0; β) := −R̃− π

Λ + ρ

(
1− βη̃

Λ + ρ+ β

)
.

2. When θ0 = θ ∈ (0, θ), then F = (Λ+ρ)F̂ (θ̃,0)
Λ+ρ+β

and U = −R̃− π
Λ+ρ+β

.

Furthermore, when θ0 = θ = θ̃0 (and thus η = η̃), an increase in the subsidy s tightens the

entry condition, i.e., ∂(F+U)
∂s

< 0, when κ̃ is not too large, i.e., when the activist’s cost of

effort κ is small and its initial stake θ0 = θ is relatively large.

Intuitively, a firm-level subsidy makes it optimal to increase the manager’s effortm, which

requires a higher payment Bt for the manager to provide the necessary incentives. This, in

turn, decreases the activist’s effort incentives a. Hence, a firm-level subsidy raises firm-level

investment but crowds out efforts by the activist, potentially reducing the overall transition

rate. Indeed, an increase in the firm-level subsidy s actually decreases transition rate λ if

κ̃ < ϕ, that is, if the activist’s cost of effort is low or its stake is large. Otherwise, when κ

is large relative to ϕ, the firm-level subsidy stimulates green transition and specifically does

so under passive ownership (i.e., κ̃ → ∞). In addition, the firm-level subsidy reduces the

comparative advantage of the activist and the value of activism. As such, firm-level subsidy

discourages activist entry, precisely when activism is beneficial (i.e., κ̃0 is low).

We next characterize the level of green investment subsidy s∗ = maxs∈[0,s] λ0 that maxi-

mizes the rate of green transition. Proposition 11 implies that when κ̃ is low, higher s reduces

the transition rate under active ownership and discourages activist entry. Under these cir-

cumstances, a firm-level subsidy s > 0 is detrimental to the transition rate, so s∗ = 0. On

the other hand, when κ̃ is large, raising s improves the transition rate under active (and

passive) ownership and discourages activist entry, which may increase λ0 since activism is

relatively inefficient. In this case, investment subsidies foster transition and s∗ > 0. In a

nutshell, firm-level subsidies hamper green transition, precisely when activism is valuable

for green transition while fostering transition otherwise. The following corollary formalizes

these insights for β = 0. By continuity, its statements apply as long as β is not too large.
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Figure 5: The Effects of Investment Subsidy. This figure illustrates the model dynamics. The
relevant parameters are ∆ = 1, Λ = 1, κ = 1, β = 1, ρ = 0.05, π = 0.05, η = 0.25, θ̃0 = 0.5, and ϕ = 5.
Qualitative outcomes are robust to the choice of these parameters.

Corollary 4. Suppose that β = 0 and θ0 = θ̃0 = θ. Then, the following holds:

1. When κ̃ < ϕ and s are sufficiently small and activist entry is feasible (i.e., there exists

at least one level s under which F + U ≥ 0), then it is optimal not to subsidize green

investment in that s∗ = 0.

2. When κ̃ > ϕ, then s∗ ≥ 0, where the inequality is strict if F + U ̸= 0 and the entry

condition does not bind for s = 0.

Firm-level subsidies also affect the activist’s dynamic trading. Because the activist grad-

ually exits after entry if and only if θ0 < max{θC , θ} and θ increases in s, the firm-level

subsidy increases the activist’s propensity to divest its stake and to exit. Overall, the firm-

level subsidy decreases the extent of activism in three ways, (i) by reducing activist effort

(for a given stake θ), (ii) by incentivizing exit, and (iii) by discouraging entry.

Figure 5 illustrates the effects of investment subsidies when β > 0 and κ is small relative

to ϕ, i.e., activism is beneficial. Panel A shows that the exit threshold max{θ, θC} increases

with s, confirming that firm-level investment subsidies increases the activist’s propensity to

exit. Panel B plots Es = F + U for R̃ = 0; it thus depicts the maximum value of R̃ that

satisfies (23). Because Es decreases with s, investment subsidy tightens the entry condition

and discourages entry as shown in Corollary 4. The right panel C plots the change in average

transition rate relative to the case without subsidies s = 0. In line with Corollary 4, it shows

that investment subsidy hampers transition, in that s = 0 maximizes transition rate.
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6 Conclusion

We develop a model of investor activism and green transition with endogenous activist entry,

post-entry trading, and exit. In this model, efforts by the activist and the firm’s manager

improve the firm’s green transition rate, but are subject to moral hazard. Activism raises the

green transition rate under first best, but introduces a double-agency problem and therefore

causes underinvestment in efforts under moral hazard. Due to this double-agency, activist

engagement crowds out managerial efforts and only facilitates the green transition when the

activist is sufficiently skilled. Depending on its efficacy, the activist accumulates a larger

stake or eventually exits after entry. Post-entry trading opportunities have an ambiguous

impact on investor activism and the green transition: They encourage entry and subsequent

exit of low-skill activists and discourage entry and exit of high-skill activists.

Our model has implications for optimal environmental regulation via carbon taxes or

carbon pricing within a cap-and-trade scheme and green investment subsidies. Carbon tax-

ation improves green transition rates conditional on activist entry, but can deter activists

from entering. Consequently, optimal carbon tax can be below or above the Pigouvian level.

When the activist has strong incentives to enter, e.g., due to impact preferences or financial

profits from activism, optimal carbon tax can addresses the double-agency problem without

affecting the activist’s entry decision and therefore lies above the Pigouvian level. Otherwise,

when socially responsible activism is hard to incentivize and associated with financial losses,

optimal carbon tax lies below the Pigouvian level to encourage activist entry. Finally, we

show that green investment subsidies, as, for instance, offered under the Inflation Reduction

Act, increase firm-level investments in green transition but crowd out impact activism and

generally have adverse effects on the green transition in the presence of moral hazard.

Our model of investor activism is sufficiently general and flexible to also apply in settings

other than impact investing and sustainable finance. Going forward, our framework can be

used or extended to study active investors more generally, such as hedge funds Brav et al.

(2008) or private equity owners (Kaplan and Strömberg, 2009).
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Kaplan, S. N. and P. Strömberg (2009). Leveraged buyouts and private equity. The Journal of
Economic Perspectives 23 (1), 121–146.

Kölbel, J. F., F. Heeb, F. Paetzold, and T. Busch (2020). Can sustainable investing save the world?
reviewing the mechanisms of investor impact. Organization & Environment 33 (4), 554–574.

Krueger, P., Z. Sautner, and L. Starks (2020). The importance of climate risk for institutional
investors. The Review of Financial Studies 33 (3), 1067–1111.

Kumar, M. (2023). Getting dirty before you get clean: Institutional investment in fossil fuels and
the green transition. Available at SSRN 4580631 .

Kyle, A. S. and J.-L. Vila (1991). Noise trading and takeovers. The RAND Journal of Economics,
54–71.

Landier, A. and S. Lovo (2023). Esg investing: How to optimize impact? The Review of Financial
Studies.

Marinovic, I. and F. Varas (2021). Strategic trading and blockholder dynamics. Working paper
Stanford University .

Maug, E. (1998). Large shareholders as monitors: Is there a trade-off between liquidity and control?
The Journal of Finance 53 (1), 65–98.

39



Mayer, S. (2022). Financing breakthroughs under failure risk. Journal of Financial Eco-
nomics 144 (3), 807–848.

Naaraayanan, L., K. Sachdeva, and V. Sharma (2023). The real effects of environmental activist
investing. Working Paper London Business School .

Oehmke, M. and M. M. Opp (2022). A theory of socially responsible investment. Working Paper
London School of Economics.

Popp, D. (2002). Induced innovation and energy prices. The American Economic Review 92 (3),
160–180.
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Appendix

A Activist Optimization and Trading

A.1 Optimal Short-Term Contracting

We characterize the optimal short-term contract over [t, t + dt] which is signed at time t

between controlling shareholder (i.e., the activist or the passive investor) and the manager.

This contract stipulates state-contingent transfers dCS
t to the manager at time t+ dt.

Recall the heuristic timing of actions. First, given stake θt, activist and manager sign a

contract over [t, t+dt). Second, uncertainty as to whether the transition process is completed

is resolved. Payments are made and the contract ends. Third, in case of no completion, the

activist trades and chooses dθt, pinning down next-period stake θt+dt = θt + dθt. Then,

at time t + dt with activist stake θt+dt, the activist and the manager sign a contract over

[t + dt, t + 2dt), and so on. Giving this timing of events, the contract can only condition

on the outcomes of the completion process, but not on the activist’s trading as the contract

ends before the activist chooses dθt.

There are three possible states S at time t+dt, denoted S = 1, 2, 3. First, with probability

1 − Λdt, the transition is not completed yet—which we denote by S = 1. Second, with

probability Λdt(1− at−mt), the transition process fails—which we denote by S = 2. Third,

with probability Λdt(at +mt), the transition process succeeds—which we denote by S = 3.

When the passive investor is the controlling shareholder, then at = 0 which coincides with

the effort level ât that the manager anticipates. If the activist is the controlling shareholder,

then at > 0 and the manager anticipates effort level ât (which coincides with at in optimum).

Given the state-contingent payments dCS
t and anticipating effort ât from the controlling

shareholder, the manager chooses mt to maximize its payoff (for t < T ):

Ŵt = max
mt≥0

{
e−ρdt

(
(1− Λdt)dC1

t + Λdt(1− at −mt)dC
2
t + Λdt(ât +mt)dC

3
t

)
− ϕm2

t

2
dt

}
.

Optimal interior effort mt solves then the first-order condition

Λdt(dC3
t − dC2

t ) = eρdtϕmtdt ⇐⇒ dC3
t − dC2

t =
ϕmt

Λ
. (A.1)

We used that in the continuous time limit dt → 0, it follows eρdtϕmtdt = (1 + ρdt)ϕmtdt =

ϕmtdt due to (dt)2 = 0, and divided both sides by dt.

The game ends at time T , and the manager’s payoff at time t = T equals dC2
t in case of
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failure and dC3
t in case of success. The manager’s expected payoff must be positive at any

point in time, including at times t ≥ T . That is, dC2
t , dC

3
t ≥ 0 (to ensure positive payoff at

time T ) as well as Ŵt ≥ 0 (to ensure positive payoff at times t ≤ T ).

The controlling shareholder’s value function at time t < T is Vt and its ownership stake

equals θt = θ. The controlling shareholder chooses payments dCS
t to maximize

max
dCS

t ,at

{
− κa2t

2
+ θe−ρdt

(
(1− Λdt)(Vt+dt − dC1

t )

+ Λdt(1− at −mt)(V
D − dC2

t ) + Λdt(at +mt)(V
D +∆− dC3

t )

)}

subject to (A.1), Ŵt ≥ 0, and dC2
t , dC

3
t ≥ 0.

It is clear that setting dC2
t = 0 is optimal. We write now Bt = dC3

t . It follows from the

incentive compatibility constraint (A.1) that Bt is not infinitesimal, i.e., not of order dt.

Further, it is clear that to maximize its own payoff, the controlling shareholder minimizes

agency rents by designing the contract such that Ŵt = 0 and the manager breaks even. Thus,

e−ρdt
(
(1− Λdt)dC1

t + Λdt(ât +mt)Bt

)
− ϕm2

t

2
dt = 0. (A.2)

For (A.2) to hold, it must be that dC1
t is infinitesimal and of order dt, in that we can write

dC1
t = ctdt. In the continuous time limit dt → 0, it follows eρdtϕmtdt = (1 + ρdt)ϕmtdt =

ϕmtdt due to (dt)2 = 0 as well as (ctdt)(Λdt) = 0. Thus, (A.2) simplifies to

ct =
ϕm2

t

2
− Λ(ât +mt)Bt,

which is (10). This concludes the argument.

A.2 Proof of Proposition 1

Consider that optimal trading is smooth, i.e., dθ = θ̇dt. Then, by the dynamic programming

principle and the integral expression (3) for activist payoff, the activist’s value function

Vt = V (θt) satisfies the HJB equation (11). In addition, the optimality condition (12)

applies, i.e., V ′(θ) = P (θ). Inserting (12) into (11), we obtain

(ρ+ Λ)V (θ) = max
B≥0

{
θ (µ− π − c)− κa2

2
+ Λθ

[
V D + (a+m)(∆−B)

]}
, (A.3)
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subject to incentive constraints (8) and (9), i.e., m = ΛB
ϕ

and a = θΛ(∆−B)
κ

, and managerial

wage (10), i.e., c = ϕm2

2
− Λ(a+m)B. Inserting (10) into (A.3), we can simplify (A.3) to

(ρ+ Λ)V (θ) = max
m≥0

{
θ

(
µ− π − ϕm2

2

)
− κa2

2
+ Λθ

[
V D + (a+m)∆

]}
, (A.4)

subject to incentive constraints (8) and (9), i.e., m = ΛB
ϕ

and a = θΛ(∆−B)
κ

.

The first-order condition with respect to m yields (with ∂B
∂m

= ϕ
Λ
and ∂a

∂m
= − θϕ

κ
):

θ

(
−ϕm+ Λ

(
1− ϕ

κ

)
∆

)
+ θϕa = 0. (A.5)

Observe that

a =
θΛ(∆−B)

κ
=

θ(Λ∆− ϕm)

κ
,

so the first-order condition (A.5) simplifies (for θ > 0) to

−ϕm+ Λ

(
1− ϕ

κ

)
∆+

θ(Λ∆− ϕm)

κ
= 0.

Denoting κ̃ = κ/θ, we can solve

m = m(θ) =
κ̃

ϕ

(
Λ∆

ϕ+ κ̃

)
.

Thus,

a = a(θ) =
θ(Λ∆− ϕm)

κ
=

ϕ

κ̃

(
Λ∆

ϕ+ κ̃

)
.

These expressions for a and m coincide with those presented in (14).

The manager’s bonus is B = B(θ) = ϕm(θ)
Λ

and its wage then becomes

c = c(θ) =
ϕm(θ)2

2
− Λ(a(θ) +m(θ))B(θ) = −ϕm(θ)2

2
− ϕa(θ)m(θ).

Inserting optimal m and a and a+m =
∆Λ(κ̃2+ϕ2)
κ̃ ϕ (κ̃+ϕ)

into the HJB equation (A.4), we obtain

(ρ+ Λ)V (θ) =θ

(
µ− π −

(
κ̃2

2ϕ

)(
Λ∆

ϕ+ κ̃

)2
)

−

(
ϕ2κθ2

2κ

(
Λ∆

ϕ+ κ̃

)2
)

+ Λθ
[
V D +

∆2Λ (κ̃2 + ϕ2)

κ̃ ϕ (κ̃+ ϕ)

]
.
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This can be simplified to obtain (13), in that

V̂ (θ) = θ

(
µ− π + ΛV D

ρ+ Λ
+

∆2Λ2 (κ̃2 + ϕκ̃+ ϕ2)

2ϕκ̃ (κ̃+ ϕ) (ρ+ Λ)

)
.

Observe that V̂ (θ) solves (A.4), and represents the activist’s payoff “as if” it did not trade

at all and θ remained constant up to transformation.

Taking the limit κ̃ → ∞ and setting π = 0, we get

P 0 = lim
π→0,κ̃→∞

V̂ (θ)

θ
=

∆2Λ2

2ϕ(ρ+ Λ)
,

which is (15).

A.3 Proof of Proposition 2

The proof proceeds in several parts. Part I establishes the convexity of function V̂ (θ) char-

acterized in Proposition 1 and derives an upper and lower bound for the stock price P (θ).

Part II characterizes the endogenous thresholds θ and θ at which the activist is indifferent

between not trading at all and selling its entire stake or buying the entire firm respectively;

as we show, these thresholds pin down the smooth trading region (θ, θ). Part III presents

general results regarding the activist’s optimal trading. Part IV characterizes the different

trading regions and, in particular, establishes that (i) smooth trading within (θ, θ) is opti-

mal, (ii) the activist stops trading once θ ∈ {0, 1}, (iii) the activist finds it strictly optimal

to trade toward 0 (1) when θ ∈ (0, θ) (θ ∈ (θ, 1)), and (iv) the activist randomizes between

not trading at all and buying the entire firm (selling the entire firm) when θ = θ (θ = θ).

Part V solves for the endogenous trading rate in the different regions of the state space [0, 1].

Part VI shows that whenever θ > 0, then θ is bounded away from zero, in that there exits

θmin > 0 such that θt ≥ θminI{θt > 0}, with indicator function I{·}.

To avoid the study of degenerate cases, we assume (throughout the paper and in the

following proof) that the smooth trading region is non-empty. This turns out equivalent to

θ < θ. Appendix F.3 characterizes the activist’s optimal trading when the smooth trading

region is empty.

In the proof, we distinguish several cases and analyze different endogenous regions in the

state space θ ∈ [0, 1] separately—some of these regions might be empty. In what follows, we

adapt the convention that whenever we analyze a certain interval/region within the state

space, we implicitly assume that this region is non-empty (without explicitly spelling it out);

otherwise, the analysis does not apply and the argument can be skipped.
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A.3.1 Part I: Convexity of V̂ (θ) and Bounds for Stock Price

We prove that V̂ (θ) is strictly convex on (0, 1). For this purpose, we first take the derivative
of V̂ (θ) to obtain

V̂ ′(θ) =
µ+ ΛV D

Λ + ρ
+ (A.6)

∆2 Λ2 κ3 + 2∆2 Λ2 κ2 ϕ θ + 4∆2 Λ2 κϕ2 θ2 + 2∆2 Λ2 ϕ3 θ3 − 2π κ3 ϕ− 4π κ2 ϕ2 θ − 2π κϕ3 θ2

2κϕ (κ+ ϕ θ)
2
(Λ + ρ)

.

In the smooth trading region, P (θ) = V̂ ′(θ). We then calculate

V̂ ′′(θ) =
∆2 Λ2 ϕ θ (3κ2 + 3κϕ θ + ϕ2 θ2)

κ (κ+ ϕ θ)3 (Λ + ρ)
> 0, (A.7)

which is positive as desired.

Next, we show that in any state θ, we have

P 0 ≤ P (θ) ≤ P 1.

The value P 1 is defined as

P 1 =
µ− c(1) + Λ

[
V D + (a(1) +m(1))(∆−B(1))

]
Λ + ρ

=
µ− ϕm(1)2

2
+ Λ

[
V D + (a(1) +m(1))∆

]
Λ + ρ

= Et

[∫ ∞

t

e−(Λ+ρ)(u−t)

(
µ− ϕm(1)2

2
+ Λ

[
V D + (a(1) +m(1))∆

])
du

]
, (A.8)

which is the (hypothetical) stock price if the activist owns the entire firm in perpetuity,

leading to efforts a(1) and m(1). To prove P (θ) ≤ P 1, note that we can express the price

Pt = P (θ) at time t < T in state θt = θ as follows:

P (θ) = Et

[∫ ∞

t

e−(Λ+ρ)(u−t)

(
µ− ϕm(θu)

2

2
+ Λ

[
V D + (a(θu) +m(θu))∆

])
du

]
,

where by incentive compatibility

a(θ) =
θ(Λ∆− ϕm(θ))

κ
=

Λ∆− ϕm(θ)

κ̃
with κ̃ =

κ

θ
.
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The activist’s optimization over effort in state θ is

(a(θ),m(θ)) ∈ argmax
a,m

(
Λ∆(a+m)− κa2

2θ
− ϕm2

2

)
s.t. a =

θ(Λ∆− ϕm)

κ
.

Thus, −ϕm(θu)2

2
+ Λ∆(a(θu) +m(θu)) (strictly) increases in θ. As a result,

P 0 = Et

[∫ ∞

t

e−(Λ+ρ)(u−t)

(
µ− ϕm(0)2

2
+ Λ

[
V D + (a(0) +m(0))∆

])
du

]
≤ Et

[∫ ∞

t

e−(Λ+ρ)(u−t)

(
µ− ϕm(θu)

2

2
+ Λ

[
V D + (a(θu) +m(θu))∆

])
du

]
= Pt ≤ P 1,

which is what we wanted to show.

Finally, note that in state θt = θ ∈ (0, 1) with P (θt) = Pt, the above inequalities are strict,

whenever θ stays within (0, 1) with positive probability over a non-empty time interval.

A.3.2 Part II: Threshold Determination

Define the function

KL(θ) = θP 0 − V̂ (θ).

Clearly, KL(0) = 0 and K ′
L(θ) = P 0 − V̂ ′(θ), so K ′′

L(θ) = −V̂ ′′(θ) < 0. Thus, KL(θ) has

maximally one root on (0, 1). Provided KL(θ) has a root on (0, 1), denoted θ0, then one can

calculate

θ0 =
κ
(√

ϕπ (2∆2 Λ2 + ϕπ) + ϕπ
)

∆2 Λ2 ϕ
. (A.9)

It is clear that θ0 ≥ 0 and strictly so if π > 0. The lower threshold θ, defined as θ = sup{θ ∈
[0, 1] : V̂ (θ) = θP 0}, then satisfies

θ = min{θ0, 1} ∈ [0, 1]. (A.10)

Thus, P 0θ > V̂ (θ) for any θ ∈ (0, θ), P 0θ = V̂ (θ) for θ = θ if θ < 1, and P 0θ < V̂ (θ) for

θ > θ.

Next, define

KH(θ) = V̂ (1)− (1− θ)P 1 − V̂ (θ),

where P 1 is from (A.8). Note that K ′
H(θ) = P 1 − V̂ ′(θ) and K ′′

H(θ) = −V̂ ′′(θ) < 0. Since
KH(1) = 0, it follows that KH(θ) has maximally one root on (0, 1). Provided KL(θ) has a
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root on (0, 1), denoted θ0, then one can calculate θ0 = N/D with

N := 2κϕ3 π + 2κ3 ϕπ + 4κ2 ϕ2 π +∆2 Λ2 ϕ3 −∆2 Λ2 κϕ2 −∆2 Λ2 κ2 ϕ

−

(
ϕ (∆4 Λ4 κ4 ϕ+ 6∆4 Λ4 κ3 ϕ2 + 7∆4 Λ4 κ2 ϕ3 + 2∆4 Λ4 κϕ4

+∆4 Λ4 ϕ5 + 8∆2 Λ2 κ6 π + 28∆2 Λ2 κ5 ϕπ + 36∆2 Λ2 κ4 ϕ2 π

+ 24∆2 Λ2 κ3 ϕ3 π + 12∆2 Λ2 κ2 ϕ4 π + 4∆2 Λ2 κϕ5 π

+ 4κ6 ϕπ2 + 16κ5 ϕ2 π2 + 24κ4 ϕ3 π2 + 16κ3 ϕ4 π2 + 4κ2 ϕ5 π2)

)1/2

and

D := 2∆2 Λ2 ϕ (κ+ ϕ)2

The upper threshold θ, defined as θ = inf{θ ∈ [0, 1] : V̂ (θ) = V̂ (1)−(1−θ)P 1}, then satisfies

θ = min{[θ0]+, 1}, (A.11)

where [x]+ = max{x, 0}. Thus, V̂ (1)− (1− θ)P 1 > V̂ (θ) for θ > θ, V̂ (1)− (1− θ)P 1 = V̂ (θ)

for θ = θ, and V̂ (1)− (1− θ)P 1 < V̂ (θ) for θ < θ.

Note that the regions (0, θ) or (θ, 1) might be empty. Further, recall that it is assumed

that the smooth trading region is non-empty, which, as will be shown, is equivalent to θ > θ.

See Appendix F.3 for the characterization of the activist’s optimal trading when the smooth

trading region is empty.

A.3.3 Part III: Optimality of Trading Strategy (Preliminaries)

We allow for continuous and lumpy trading for times t ≥ T β by specifying the dynamics of

the activist’s stake as

dθt = θ̇tdt+ dIt, (A.12)

where θ̇t is the drift of dθt and dIt captures solely lumpy trading, in that It =
∫ t

0
dIs is

constant except for a countable number of times t.

More specifically, we consider that at an endogenous (state-dependent) intensity ξ ∈
[0,∞], the activist conducts a lumpy trade toward state θ̂ ∈ [0, 1], where θ̂ is optimally

chosen by the actvist and thus endogenous. With a slight abuse of notation, ξ = +∞
corresponds to a lumpy trade that occurs with some atom of probability (possibly with

probability one). That is, we can write

dθ = θ̇dt+ (θ̂ − θ)dN,
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where dN ∈ {0, 1} is a jump process with E[dN ] = ξdt. The activist’s value function then

satisfies the HJB equation

(ρ+ Λ)V (θ) = max
B≥0,θ̇,ξ,θ̂

{
θ (µ− π − c)− κa2

2
+ Λθ

[
V D + (a+m)(∆−B)

]
+ θ̇
[
V ′(θ)− P (θ)

]
+ ξ
[
V (θ̂)− V (θ)− (θ̂ − θ)P (θ̂)

]}
, (A.13)

subject to incentive constraints (8) and (9), i.e., m = ΛB
ϕ

and a = θΛ(∆−B)
κ

, and managerial

wage (10), i.e., c = ϕm2

2
−Λ(a+m)B. For an interior solution θ̇ ∈ (−∞,+∞) and ξ ∈ [0,∞)

to be optimal, it must be

P (θ) = V ′(θ) and max
θ̂∈[0,1]

[
V (θ̂)− V (θ)− (θ̂ − θ)P (θ̂)

]
≤ 0. (A.14)

As setting ξ = 0 is optimal whenever maxθ̂∈[0,1]
[
V (θ̂)− V (θ)− (θ̂ − θ)P (θ̂)

]
< 0, we obtain

ξ
[
V (θ̂)−V (θ)−(θ̂−θ)P (θ̂)

]
= 0 for any θ̂ whenever (A.14) holds. Plugging these conditions

back into (A.13), we obtain

(ρ+ Λ)V (θ) = max
B≥0

{
θ (µ− π − c)− κa2

2
+ Λθ

[
V D + (a+m)(∆−B)

]}
,

which is akin to (A.4) and admits closed-form solution V (θ) = V̂ (θ). Thus, the activist’s

value function is V (θ) = V̂ (θ) whenever there is no lumpy trade with an atom of probability,

i.e., whenever θ̇ ∈ (−∞,∞) and ξ ∈ [0,∞).

We define the endogenous region

S = {θ ∈ [0, 1] : θ̇ ∈ (−∞,∞) and ξ ∈ [0,∞)}

That is, for θ ∈ S, we have V̂ (θ) and P (θ) = V̂ ′(θ). As V̂ ′′(θ) > 0, we have that price P (θ)

is increasing in the interior of S, i.e., in int(S), in that P ′(θ) = V̂ ′′(θ) > 0.

Consider that θ ∈ int(S), i.e., θ lies in the interior of S. If the activist trades from state

θ toward state θ̂ ∈ int(S), its payoff changes by

G(θ̂; θ) := V̂ (θ̂)− V (θ)− (θ̂ − θ)P (θ̂).

Clearly, G(θ; θ) = 0 and

∂G(θ̂; θ)

∂θ̂
= V ′(θ̂)− P (θ̂)− (θ̂ − θ)P ′(θ̂) = −(θ̂ − θ)P ′(θ̂).
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As P ′(θ̂) > 0 and G(θ; θ) = 0, we obtain that G(θ̂; θ) < 0 for any θ ̸= θ̂ ∈ int(S). Thus, in

state θ ∈ int(S), any lumpy trade toward state θ̂ ∈ int(S) is strictly sub-optimal.

Consider state θ ̸∈ S, so the activist conducts a lumpy trade with an atom of prob-

ability. It is without loss of generality to assume that this trade brings its stake θ, i.e.,

the state variable, into the set S.32 The activist’s value function therefore satisfies V (θ) =

maxθ̂∈S
[
V̂ (θ̂)− (θ̂− θ)P (θ̂)

]
. Suppose to the contrary that θ̂ ∈ int(S). Then, the first-order

condition for the optimal choice of θ̂, that is

V̂ ′(θ̂)− P (θ̂)− (θ̂ − θ)P ′(θ̂) = −(θ̂ − θ)P ′(θ̂) = 0,

must hold, where we used that V̂ ′(θ̂) = P (θ̂) for θ̂ ∈ int(S). However, due to P ′(θ̂) > 0, this

first-order condition cannot hold. Thus, θ̂ must lie on the edge of the set S, i.e., any lumpy

trade brings θ onto the edge of S.

Above arguments also generalize to the case that θ ∈ S − int(S). When θ ∈ S − int(S),
then any lumpy trade toward θ̂ ∈ int(S) is strictly suboptimal.

A.3.4 Part IV: Optimality of the Trading Strategy

We now conjecture and verify that S = [θ, θ] ∪ {0, 1}, implying that V (θ) = V̂ (θ) and

V (θ) = V̂ (θ). We further conjecture and verify that states 0 and 1 are absorbing (i.e., the

activist stops trading once its stake reaches 0 or 1), so that P (1) = P 1 and P (0) = P 0.33

Because of P (0) = P 0 and P (1) = P 1 as well as V (θ) = V̂ (θ) and V (θ) = V̂ (θ), the activist

is indifferent between not trading at all and trading toward 0 (1) when in state θ (θ).

Moreover, given the conjectures, we obtain for any θ ∈ S ∩ (0, 1) that P 0 < P (θ) < P 1,

because—starting within S∩(0, 1)—θ stays for non-trivial amount of time within the interval

(0, 1). In that case, according to Part I, the inequalities P (θt) ≥ P 0 and P (θt) ≤ P 1 hold as

strict inequalities.

Given our previous findings, it is strictly suboptimal in state θ ∈ (θ, θ) to conduct a

lumpy trade toward state θ̂ ∈ (θ, θ). It is easy to see that by continuity of price and value

function on [θ, θ], this statement extends to θ, θ̂ ∈ [θ, θ], in that trading from θ ∈ [θ, θ] toward

θ̂ ∈ [θ, θ] is strictly suboptimal.

For the remainder of the proof, we proceed in several steps and distinguish several cases.

32Otherwise, the lumpy trade would be followed immediately by another lumpy trade. Two consecutive
lumpy trade are equivalent to one trade. Consolidating (a finite number of) consecutive lumpy trades into

one lumpy trade, we obtain one lumpy trade toward θ̂ ∈ S.
33Note that by Part I we have P (0) ≥ P 0 and P (1) ≤ P 1. These inequalities hold in equality when states

0 and 1 are absorbing.
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State θ ∈ (0, θ). First, suppose to the contrary that θ̇ ∈ (−∞,∞) and ξ ∈ [0,∞) is

optimal. Then, θ ∈ S and V (θ) = V̂ (θ). But, as θ ∈ (0, θ), we have V̂ (θ) < θP 0 and the

activist could attain strictly higher payoff, namely, θP (0) ≥ θP 0, through a lumpy trade

dθ = −θ toward state 0, a contradiction. As a consequence, θ ̸∈ S.

Thus, the activist optimally conducts a lumpy trade in state θ ∈ (0, θ). According to our

previous results from Part III, this lumpy trade brings θ onto the edge of S, so the activist

trades toward θ̂ ∈ {0, 1, θ, θ}. Trading toward θ̂ = 0 yields payoff θP (0) ≥ θP 0. Trading

toward θ̂ = θ yields payoff

V̂ (θ)− (θ − θ)P (θ) = θP 0 − (θ − θ)P (θ) < θP 0 − (θ − θ)P 0 = θP 0.

where we used that V̂ (θ) = θP 0 and P 0 < P (θ) for θ > 0. Thus, trading toward θ̂ = 0

strictly dominates trading toward θ̂ = θ.

A trade toward θ < 1 with θ > θ yields lower payoff than a trade toward θ at price P (θ)

immediately followed by a trade from θ toward θ at price P (θ), since P (θ) ≥ P (θ). As we

have shown, it is strictly sub-optimal in state θ to trade toward θ. In addition, it is strictly

suboptimal to trade from θ toward θ. Thus, it must be strictly suboptimal to trade from 0

toward θ. Because, by the definition of θ, the activist is indifferent in state θ to trade toward

θ̂ = 1 or not trading at all, while it is strictly suboptimal to trade toward θ, it must be also

strictly suboptimal to trade toward θ̂ = 1. Taken together, in state θ ∈ (0, θ), immediately

trading toward zero, i.e., θ̂ = 0, is strictly optimal.

State θ = 0. Consider next θ = 0. Importantly, notice that we consider t ≥ T β, i.e.,

the scenario that the state θ = 0 is reached after time T β ≥ 0 and in particular after the

activist has entered.34 If the activist conducts a lumpy trade, then this trade is toward state

θ̂ ∈ {θ, θ, 1} on the edge of S. A trade toward θ̂ = θ ∈ (0, 1) yields

V̂ (θ)− θP (θ) < V̂ (θ)− θP 0 = 0,

where the first inequality follows from P (θ) > P 0 (for θ > 0) and the equality from V̂ (θ)−
θP 0 = 0. A trade toward θ < 1 with θ > θ yields a lower payoff than a trade toward θ at

price P (θ) immediately followed by a trade from θ toward θ at price P (θ), since P (θ) ≥ P (θ).

As we have shown, it is strictly sub-optimal in state θ to trade toward θ. In addition, it is

strictly suboptimal to trade from 0 toward θ. Thus, it must be strictly suboptimal to trade

from 0 toward θ. Because, by the definition of θ, the activist is indifferent at θ to trade

34As long as β < ∞, we have T β > 0 almost surely.
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toward θ̂ = 1 or not trading at all (yielding payoff V̂ (θ̂)), while it is strictly suboptimal to

trade toward θ, it is also strictly suboptimal to trade toward θ̂ = 1.

Next, suppose to the contrary that smooth trading in state θ = 0 is optimal. Thus, θ̇ > 0.

But, as we have shown, in any state θ ∈ (0, θ), it is strictly optimal to (immediately) trade

toward zero. As such, smooth trading θ̇ > 0 in state θ = 0 cannot be, because it would be

immediately followed by a lumpy trade toward zero.

As a result, state θ = 0, if reached at time t > 0, is absorbing, i.e., the activist stops

trading once θ reaches zero.

Finally, recall that the activist’s initial trade at time t = 0 is fundamentally different

from post-entry trading after time T β. When the activist chooses its initial stake θ0 at t = 0,

it can acquire part of this initial stake at a discount (i.e., below post-entry market price). In

contrast, after time T β (i.e., post-entry), the activist always trades at the fair market price.

State θ ∈ (θ, 1). Note that V̂ (1) ≤ V (1), as the activist always has the option not to trade

at all in state θ = 1 yielding a payoff V̂ (1).

Next, suppose to the contrary that θ̇ ∈ (−∞,∞) and ξ ∈ [0,∞) is optimal. Then, θ ∈ S
and V (θ) = V̂ (θ). But, as θ ∈ (θ, 1), we have V̂ (θ) < V̂ (1) + (1− θ)P 1 ≤ V (1) + (1− θ)P 1

and the activist could attain strictly higher payoff through a lumpy trade toward 1, i.e.,

dθ = 1− θ, a contradiction. As a consequence, θ ̸∈ S.

Thus, the activist conducts a lumpy trade. According to our findings in Part III, this

lumpy trade brings θ onto the edge of S, so the activist trades toward θ̂ ∈ {0, 1, θ, θ}. Trading
toward θ̂ = 1 yields V (1)− (1− θ)P 1 ≥ V̂ (1) + (1− θ)P 1. Trading toward θ̂ = θ yields

V̂ (θ) + (θ − θ)P (θ) = V̂ (1)− (1− θ)P 1 + (θ − θ)P (θ)

< V̂ (1)− (1− θ)P 1 + (θ − θ)P 1 ≤ V (1)− (1− θ)P 1,

where we have used that V̂ (θ) = V̂ (1)− (1− θ)P 1 and P (θ) < P 1 for θ < 1. Thus, trading

toward θ̂ = 1 strictly dominates trading toward θ̂ = θ.

A trade toward θ with θ > θ at price P (θ) yields lower payoff than a trade toward θ at

price P (θ) immediately followed by a trade from θ toward θ at price P (θ), since P (θ) ≥ P (θ).

As we have shown, it is strictly sub-optimal in state θ to trade toward θ. In addition, it is

strictly suboptimal to trade from 1 toward θ. Thus, it must be strictly suboptimal to trade

from 1 toward θ. Because, by the definition of θ, the activist is indifferent at θ between

trading toward θ̂ = 0 and not trading at all, while it is strictly suboptimal to trade toward

θ, it is also strictly suboptimal to trade toward θ̂ = 0.
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In state θ ∈ (θ, 1), immediately trading toward θ̂ = 1, i.e., dθ = (1 − θ), is thus strictly

optimal.

State θ = 1. Consider θ = 1. If the activist conducts a lumpy trade, then this trade is

toward state θ̂ ∈ {θ, θ, 0} on the edges of S. Relative to not trading and collecting payoff

V̂ (1), a trade toward θ ∈ (0, 1) changes payoff by

V̂ (θ) + (1− θ)P (θ)− V̂ (1) < V̂ (θ) + (1− θ)P 1 − V̂ (1) = 0,

where we have used that P (θ) < P 1 (for θ < 1) and that, by definition of θ, V̂ (θ) + (1 −
θ)P 1 − V̂ (1) = 0 for θ ∈ (0, 1).

A trade toward θ ∈ (0, 1) with θ > θ at price P (θ) yields lower payoff than a trade

toward θ at price P (θ) immediately followed by a trade from θ toward θ at price P (θ),

since P (θ) ≥ P (θ). As we have shown, it is strictly sub-optimal in state θ to trade toward

θ. In addition, it is strictly suboptimal to trade from 1 toward θ. Thus, it must be strictly

suboptimal to trade from 1 toward θ. Because, by the definition of θ, the activist is indifferent

at θ between trading toward zero and not trading at all, while it is strictly suboptimal to

trade toward θ, it is also strictly suboptimal to trade toward 0.

Next, suppose to the contrary that smooth trading in state θ = 1 is optimal. Thus, θ̇ < 0.

But, as we have shown, in any state θ ∈ (θ, 1), it is strictly optimal to trade toward one.

As such, smooth trading θ̇ < 0 in state θ = 1 cannot be, because it would be immediately

followed by a lumpy trade toward one.

As a result, state θ = 1 is absorbing.

State θ ∈ (θ, θ). As argued before, it is strictly suboptimal in state θ ∈ (θ, θ) to conduct

a lumpy trade toward state θ̂ ∈ (θ, θ). It is easy to see that by continuity of price and

value function on [θ, θ], this statement extends to θ, θ̂ ∈ [θ, θ], in that trading from θ ∈ [θ, θ]

toward θ̂ ∈ [θ, θ] is strictly suboptimal. Thus, in state θ any lumpy trade must be toward

state θ̂ ̸∈ [θ, θ]. As it is optimal to trade immediately from state θ ∈ (0, θ) toward 0 and

from state θ ∈ (θ, 1) toward 1, it is without loss of generality to consider that θ̂ ∈ {0, 1}.
In state θ ∈ [θ, θ], the activist’s value function satisfies V (θ) ≥ V̂ (θ), as not trading at all

is always an option. By definition of θ, we have V̂ (θ) > θP 0, hence a lumpy trade toward

zero is strictly suboptimal. By definition of θ, we have V̂ (θ) > V̂ (1) − (1 − θ)P 1, hence a

lumpy trade toward one is strictly suboptimal too. This verifies that any lumpy trade in

state θ ∈ (θ, θ) is strictly suboptimal, so that θ ∈ int(S).
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State θ = θ. Suppose θ > 0. In state θ = θ, the activist is indifferent between not trading

at all, yielding payoff V̂ (θ), or selling the entire stake at once, yielding payoff θP 0. Thus, it

is weakly optimal to randomize between these two options. This implies that it is optimal

to set θ̇ ≥ 0, as θ̇ < 0 is akin to an immediate lumpy trade. A strictly negative trading

rate θ̇ < 0 would bring θ into the region (0, θ) which would trigger an immediate lumpy

trade toward zero. Thus, in state θ = θ, it is optimal for the activist to either (i) randomize

between selling the entire stake and not trading (i.e., θ̇ = 0 and ξ ∈ [0,∞) with θ̂ = 0) or

(ii) trade smoothly at positive (finite) rate θ̇ > 0.

State θ = θ. Suppose θ < 1. In state θ = θ, the activist is indifferent between not trading

at all, yielding payoff V̂ (θ), or buying the entire firm at once, yielding payoff V̂ (1)−(1−θ)P 1.

Thus, it is weakly optimal to randomize between these two options. This implies that it is

optimal to set θ̇ ≤ 0, as θ̇ > 0 is akin to an immediate lumpy trade. A strictly positive

trading rate θ̇ > 0 would bring θ into the region (θ, 1) which would trigger an immediate

lumpy trade toward one. Thus, in state θ = θ, it is optimal for the activist to either (i)

randomize between buying the entire firm and not trading (i.e., θ̇ = 0 and ξ ∈ [0,∞) with

θ̂ = 1) or (ii) trade smoothly at negative (finite) rate θ̇ < 0.

A.3.5 Part V: Solving for Trading Rate

We now solve for the optimal trading rate. Recall that the activist stops trading in states

0 and 1, as shown in the previous part. Further, recall that when θ ∈ (0, θ), it is strictly

optimal to trade towards 0, while when θ ∈ (θ, 1), it is strictly optimal to trade towards 1.

It turns out convenient to define

P̂ (θ) :=
µ− 1

2
ϕm(θ)2 + Λ

[
V D + (a(θ) +m(θ))∆

]
Λ + ρ

(A.15)

which is the hypothetical price of the firm under the scenario that θ remains constant up to

T . It is straightforward to see that P̂ (θ) > V̂ ′(θ) = P (θ) (P̂ (θ) < V̂ ′(θ) = P (θ)) if θ̇ < 0

(θ̇ > 0), with equality at θ = θC . Also note P 0 = P̂ (0) and P 1 = P̂ (1).

For the remainder of this part of the proof, we distinguish several cases.

State θ ∈ (θ, θ). For θ ∈ (θ, θ), i.e., θ ∈ int(S), the optimality condition for trading (A.14)

implies V (θ) = V̂ (θ) and P (θ) = V̂ ′(θ); see Part III of the proof for details. Furthermore, it

is optimal to trade smoothly, i.e., ξ = 0.

Differentiating the closed-form expression for V̂ (θ) with respect to θ and using V̂ ′(θ) =
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P (θ), we obtain

(ρ+ Λ)P (θ) = µ− π − ϕm(θ)2

2
+ Λ

[
V D + (a(θ) +m(θ))∆

]
+

Λ2∆2ϕ

(ϕ+ κ̃)2
. (A.16)

In addition to satisfying (A.16), P (θ) satisfies the pricing equation of passive investors

(ρ+ Λ)P (θ) = µ− ϕm(θ)2

2
+ Λ

[
V D + (a(θ) +m(θ))∆

]
+ P ′(θ)θ̇. (A.17)

where P (θ) increases with θ, i.e., P ′(θ) > 0. Combining (A.16) and (A.17) yields

θ̇ =
1

P ′(θ)

[
−π +

Λ2∆2ϕ

(ϕ+ κ̃)2

]
, (A.18)

with P ′(θ) = V̂ ′′(θ) > 0.

Observe that −θ
(
∂c
∂a

∂a
∂θ

)
= ϕm(Λ∆−ϕm)

κ̃
= Λ2∆2ϕ

(ϕ+κ̃)2
, so (A.18) is akin to (18). To see

this, combine (8) and (10) to get c = −ϕm2

2
− ϕam, so ∂c

∂a
= −ϕm. From (9), we ob-

tain ∂a
∂θ

= Λ(∆−B)
κ

= Λ(∆−ϕm/Λ)
κ

, and θ · ∂a
∂θ

= Λ(∆−ϕm/Λ)
κ̃

. Using (14), we get −θ
(
∂c
∂a

∂a
∂θ

)
=(

Λ∆
ϕ+κ̃

)(
Λ∆− Λκ̃∆

ϕ+κ̃

)
= Λ2∆2ϕ

(ϕ+κ̃)2
, as desired.

One can expand above expression (A.18) and plug in the closed-form solution for V̂ ′′(θ)

from (A.7) to obtain

θ̇ =
κ(Λ + ρ)(κ+ θϕ) [Λ2∆2θ2ϕ− π(κ+ θϕ)2]

Λ2∆2θϕ (θ2ϕ2 + 3θκϕ+ 3κ2)
. (A.19)

Note that in state θ ∈ (θ, θ), we have θ̇ = 0 for

Λ2∆2θ2ϕ− π(κ+ θϕ)2 = 0.

This quadratic equation has two roots

θC± =
κ
√
ϕπ
(√

ϕπ ±∆Λ
)

ϕ(∆2 Λ2 − ϕπ)
=

κ
√
ϕπ
(√

ϕπ ±∆Λ
)

ϕ(∆Λ−
√
ϕπ)(∆Λ +

√
ϕπ)

When ϕπ ≥ ∆2Λ2 ⇐⇒
√
ϕπ ≥ ∆Λ, then θC± < 0 or θC± is not finite, i.e., there exists

no positive and finite solution. Under these circumstances, we have θ̇ < 0. When ϕπ <

∆2Λ2 ⇐⇒
√
ϕπ < ∆Λ, we discard the negative solution to obtain

θC =
κ
√
π√

ϕ(∆Λ−
√
ϕπ)

.
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which is (19). Under these circumstances, θ̇ > 0 for θ > θC and θ̇ < 0 for θ < θC .

State θ = θ. Unless otherwise mentioned, consider θ > 0. When θ > θC , then θ̇ > 0 in a

right-neighbourhood of θ. Then, θ drifts into the interior of [θ, θ] and no time is spent in state

θ. In this case, the price satisfies (A.17) and θ̇ satisfies (A.19); there is no randomization

over lumpy trading in that ξ = 0. In the knife-edge case θ = θC , we have θ̇ = ξ = 0.

Next, consider that θ < θC , so θ̇ < 0, P (θ) = V̂ ′(θ), and P̂ (θ) > P (θ) in a right-

neighbourhood of θ. Because we have in addition that θ̇ ≥ 0 at θ, it must be that θ̇ = 0

at θ. By definition of θ, the activist is indifferent between not trading at all and selling the

entire stake at once at θ. Once θ reaches zero, the endogenous stock price becomes P (0).

As the activist stops trading once θ reaches zero, we have P (0) = P 0. Because P (θ) = V̂ ′(θ)

on (θ, θ), we have P (θ) = V̂ ′(θ).

At θ = θ with θ̇ = 0, the randomization rate ξ is such that P (θ) = V̂ ′(θ) satisfies the

pricing equation

(ρ+ Λ)P (θ) = µ− c(θ) + ΛV D + Λ[a(θ) +m(θ)](∆−B(θ)) + ξ(P (0)− P (θ))

= µ− ϕm(θ)2

2
+ ΛV D + Λ[a(θ) +m(θ)]∆ + ξ(P (0)− P (θ)),

which can be rewritten as

P (θ) =
(Λ + ρ)P̂ (θ) + ξP 0

Λ + ρ+ ξ
.

As a consequence,

ξ =
(Λ + ρ)

[
P̂ (θ)− P (θ)

]
P (θ)− P 0

. (A.20)

with P̂ (θ) for (A.15). Note that θ̇ < 0 and P̂ (θ) > P (θ) in a right-neighbourhood of θ, so

P̂ (θ) > P (θ). Because V̂ (θ) is strictly convex and V̂ (θ) = θP 0, we have P (θ) > P 0 (as

long as θ > 0). As a result, when 0 < θ < θC , the randomization rate ξ from (A.20) is

well-defined and strictly positive.

State θ = θ. Consider 1 > θ > θ ≥ 0. When θ < θC , then θ̇ < 0 in a left-neighbourhood

of θ. Then, θ drifts into the interior of [θ, θ] and no time is spent in state θ. In this case, the

price satisfies (A.17) and θ̇ satisfies (A.19); there is no randomization over lumpy trading in

that ξ = 0. In the knife-edge case θ = θC , we have θ̇ = ξ = 0.

Next, consider that θ > θC , so θ̇ > 0, P (θ) = V̂ ′(θ), and P̂ (θ) < P (θ) in a left-

neighbourhood of θ. Because we have in addition that θ̇ ≤ 0 at θ, it must be that θ̇ = 0 at

θ. By definition of θ, the activist is indifferent between not trading at all and buying the
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entire firm at once in state θ. Once θ reaches one, the endogenous stock price becomes P (1).

As the activist stops trading once θ reaches one, we have P (1) = P 1 with P 1 characterized

in (A.8). Because P (θ) = V̂ ′(θ) on (θ, θ), we have P (θ) = V̂ ′(θ).

At θ = θ with θ̇ = 0, the randomization rate ξ is such that P (θ) = V̂ ′(θ) satisfies the

pricing equation

(ρ+ Λ)P (θ) = µ− c(θ) + ΛV D + Λ[a(θ) +m(θ)](∆−B(θ)) + ξ(P (1)− P (θ))

= µ− ϕm(θ)2

2
+ ΛV D + Λ[a(θ) +m(θ)]∆ + ξ(P (1)− P (θ))

which can be rewritten as

P (θ) =
(Λ + ρ)P̂ (θ) + ξP 1

Λ + ρ+ ξ

so that

ξ =
(Λ + ρ)

[
P̂ (θ)− P (θ)

]
P (θ)− P 1

=
(Λ + ρ)

[
P (θ)− P̂ (θ)

]
P 1 − P (θ)

. (A.21)

with P̂ (θ) for (A.15). Note that θ̇ > 0 and P̂ (θ) < P (θ) in a left-neighbourhood of θ,

so P̂ (θ) < P (θ). Because V̂ (θ) is strictly convex and V̂ (θ) = V̂ (1) − (1 − θ)P 1, we have

P (θ) < P 1. As a result, when 1 > θ > θC , the randomization rate ξ from (A.21) is well-

defined and strictly positive.

A.3.6 Part VI: Lower Bound of θ

Given the trading behavior we have solved for, we can characterize a lower bound θmin :=

inf{θt : θt > 0} on θ, in that θt ≥ θminI{θt > 0} at all times t ≥ 0 where I{·} is the indicator

function. First, consider θ̃0 ≥ θC . Then, due to θ0 ≥ θ̃0 ≥ θC , the state variable does not

take any value within the interval (0, θC), so θmin = θ̃0. Second, consider θ̃0 < θC . Then, the

state variable does not take any value in (0,min{θ, θ̃0}), and θmin = min{θ, θ̃0}. Overall,

θmin := inf{θt : θt > 0} = min{θ̃0, θ}I{θ̃0 < θC}+ θ̃0I{θ̃0 ≥ θC}. (A.22)

Next, note that θ̃0 < θC requires θC > 0 and as such π > 0. Observe that π > 0 implies

θ > 0. Overall, we have that θmin > 0.

B Proof of Proposition 3

The claims follow immediately from the arguments presented in the main text. Notably, for

times t ∈ (0, T β), the state variable θt = θ remains constant. The activist’s value function
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V β(θ) therefore solves the HJB equation

(ρ+ Λ+ β)V β(θ) = max
B≥0

{
θ

(
µ− π − ϕm2

2

)
− κa2

2
+ Λθ

[
V D + (a+m)∆

]
+ βV (θ)

}
,

subject to (9), (8), and (10). Recall that V̂ (θ) is the solution to

(ρ+ Λ)V (θ) = max
B≥0

{
θ

(
µ− π − ϕm2

2

)
− κa2

2
+ Λθ

[
V D + (a+m)∆

]}
,

subject to (9), (8), and (10).

This readily implies

(ρ+ Λ+ β)V β(θ) = (Λ + ρ)V̂ (θ) + βV (θ) ⇐⇒ V β(θ) =
(Λ + ρ)V̂ (θ) + βV (θ)

Λ + ρ+ β
.

Furthermore, it follows that both before and after time T β optimal efforts (a(θ),m(θ)) satisfy

(a(θ),m(θ)) ∈ argmax
a,m

(
Λ∆(a+m)− κa2

2θ
− ϕm2

2

)
s.t. a =

θ(Λ∆− ϕm)

κ
.

Thus, optimal efforts (a,m) are characterized in (14).

Finally, the price P β(θ) satisfies by standard arguments the pricing equation

P β(θ) =
µ− c+ Λ

[
V D + (a+m)(∆−B) + βP (θ)

Λ + ρ+ β
=

(Λ + ρ)P̂ (θ) + βP (θ)

Λ + ρ+ β
, (B.1)

with P̂ (θ) from (A.15).

C Proof of Proposition 4

C.1 Part I

The optimal level of θ0 ≥ θ̃0 > 0 solves (6).

Case θ0 ∈ [θ, θ]. Suppose now θ0 = θ ∈ [θ, θ], so V (θ) = V̂ (θ) and P (θ) = V̂ ′(θ). Let

1− η̃ = (1− η)θ̃0/θ0 ≤ 1− η denote the fraction of the initial stake θ0 which is acquired at

the (pre-entry) price P β(0) = P 0. Thus

η̃ = 1− (1− η)θ̃0/θ0 =
θ0 − θ̃0 + ηθ̃0

θ0
. (C.1)
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and (1− η)θ̃0 = θ0
[
(1− η)θ̃0/θ0

]
= θ0(1− η̃). Then,

V β(θ0)−K(θ0) = V β(θ0)− (1− η)θ̃0P
0 −

[
θ0 − (1− η)θ̃0

]
P β(θ0)

= V β(θ0)− (1− η̃)θ0P
0 − θ0η̃P

β(θ0)

= V̂ (θ0)− (1− η̃)θ0P
0 − θ0η̃

(
(Λ + ρ)P̂ (θ0) + βP (θ0)

ρ+ Λ+ β

)
.

Note that the activist enters if and only if V β(θ0)−K(θ0) ≥ R. Dividing both sides of this

inequality by θ0 > 0 and defining R̃ = R/θ0, we obtain that the activist enters if and only if

V̂ (θ0)

θ0
− (1− η̃)P 0 − η̃

(
(Λ + ρ)P̂ (θ0) + βP (θ0)

ρ+ Λ+ β

)
≥ R̃,

whereby (13) implies

V̂ (θ)

θ
=

µ− π + ΛV D

ρ+ Λ
+

∆2Λ2 (κ̃2 + ϕκ̃+ ϕ2)

2ϕκ̃ (κ̃+ ϕ) (ρ+ Λ)
.

Straightforward but tedious calculations yield that for θ = θ0, the activist enters as long as

F̂ (θ; β) + Û(θ; β) ≥ 0, with

F̂ (θ; β) = ∆2

(
ϕΛ2

2(ρ+ Λ)κ̃(ϕ+ κ̃)2

)(
κ̃(1− η̃) + ϕ(1− 2η̃)− 2βκ̃η̃

Λ + ρ+ β

)
Û(θ; β) := −R̃− π

Λ + ρ

(
1− βη

Λ + ρ+ β

)
.

Note that κ̃ = κ/θ = κ/θ0.

Case θ0 ∈ [0, θ). Suppose θ = θ0 ∈ [0, θ). In this case, P (θ) = P 0 and V (θ) = θP 0, as well

as V β(θ) = (Λ+ρ)V̂ (θ)+βP 0

Λ+ρ+β
. The activist enters if and only if

V̂ β(θ0)

θ0
− (1− η̃)P 0 − η̃

(
(Λ + ρ)P̂ (θ0) + βP (θ0)

ρ+ Λ+ β

)
≥ R̃.

With ω := Λ+ρ
Λ+ρ+β

, this simplifies to

ωV̂ (θ0)

θ0
− ηωP̂ (θ0) + (1− ω)P 0 − (1− η̃)P 0 − η̃(1− ω)P 0 ≥ R̃.
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This is equivalent to

ω

(
V̂ (θ0)

θ0
− (1− η̃)P 0 − η̃P̂ (θ0)

)
≥ R̃.

and
V̂ (θ0)

θ0
− (1− η̃)P 0 − η̃P̂ (θ0) ≥

R̃

ω
.

It follows that the activist enters so long as

ωF̂ (θ0; 0)−
ωπ

Λ + ρ
≥ R̃.

C.2 Part II

To begin with, note that the objective function in (6), that is,

O(θ0) := V β(θ0)−
{
(1− η)θ̃0P

β(0) +
[
θ0 − (1− η)θ̃0

]
P β(θ0)

}
(C.2)

is differentiable on (0, 1) except at points θ and θ. At these points, it exhibits a downward

jump, in that limθ0↑θ′ O(θ0) > limθ0↓θ′ O(θ0) for θ
′ = θ, θ. Here, V β(θ) is from (20) and P β(θ)

from (21), with V̂ (θ) from (13) and P̂ (θ) from (A.15).

For θ0 > θ̃0 to be optimal, it must be for θ in a left-neighbourhood of θ0 that

O′(θ) = (V β)′(θ)− P β(θ0)−
[
θ − (1− η)θ̃

]
(P β)′(θ) ≥ 0,

i.e., limθ↑θ0 O
′(θ) ≥ 0, with equality at θ0 if θ0 ∈ (θ̃0, 1)− {θ, θ}.

In particular, if O′(θ) < 0 for all θ ∈ (θ̃0, 1)− {θ, θ}, then θ0 = θ̃0 is optimal, conditional

on activist entry. In the remainder of the proof, we provide a sufficient parameter condition

for O′(θ) < 0 for all θ ∈ (θ̃0, 1)− {θ, θ}and therefore for optimality of θ0 = θ̃0.

Consider θ ∈ (θ̃0)− {θ, θ} and recall that V ′(θ) = P (θ). We obtain

O′(θ) =
(Λ + ρ)(V̂ ′(θ)− P̂ (θ))

Λ + ρ+ β
−
[
θ − (1− η)θ̃

](Λ + ρ)P̂ ′(θ) + βP ′(θ)

Λ + ρ+ β

∝(Λ + ρ)

[
−π + θ

(
Λ2∆2ϕ

(ϕ+ κ̃)2

)]
−
[
θ − (1− η)θ̃

][
(Λ + ρ)P̂ ′(θ) + βP ′(θ)

]
,

where the proportionality sign considers a multiple of the expression by Λ + ρ+ β. We also

used (for κ̃ = κ/θ) that

V̂ ′(θ)− P̂ (θ) =

[
−π + θ

(
Λ2∆2ϕ

(ϕ+ κ̃)2

)]
,
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which follows from (13) and (A.15) via direct calculation.

Next, calculate using (A.15):

P̂ ′(θ) =
∆2 Λ2 ϕ θ (κ2 + 3κϕ θ + ϕ2 θ2)

κ (κ+ ϕ θ)3 (Λ + ρ)
.

Accordingly, we obtain

O′(θ) ∝− ∆2 Λ2 ϕ2 (2 κ̃+ ϕ)

κ̃ (κ̃+ ϕ)3
+ (1− η)θ̃0/θ0

(
∆2 Λ2 ϕ (κ̃2 + 3 κ̃ ϕ+ ϕ2)

κ̃ (κ̃+ ϕ)3

)
− (Λ + ρ)π − β

[
θ0 − (1− η)θ̃0

]
P ′(θ)

With η̃ = θ−θ̃0+ηθ̃
θ

, we can simplify this expression to

O′(θ) ∝ ∆2Λ2ϕ

κ̃ (κ̃+ ϕ)3
(
(1− η̃)

(
κ̃2 + 3κ̃ϕ+ ϕ2)− 2κ̃ϕ− ϕ2

)
− (Λ + ρ)π − βθ0η̃P

′(θ)

As 1− η̃ ≤ 1− η and η̃ ≥ η, we obtain that O′(θ) < 0 when

∆2Λ2ϕ

κ̃ (κ̃+ ϕ)3

[
ηϕ2 + κ̃ϕ(3η − 1)− (1− η)κ̃2

]
− (Λ + ϕ)π − βθ0η̃P

′(θ) < 0,

that is, if

ηϕ2 + κ̃ϕ(3η − 1)− (1− η)κ̃2 ≥ 0 ⇐⇒ η ≥ κ̃(κ̃+ ϕ)

ϕ2 + 3κ̃ϕ+ κ̃2
.

Since

∂

∂κ̃

(
κ̃(κ̃+ ϕ)

ϕ2 + 3κ̃ϕ+ κ̃2

)
∝ (ϕ2+3κ̃ϕ+ κ̃2)(2κ̃+ϕ)−(κ̃2+ κ̃ϕ)(3ϕ+2κ̃) = ϕ3+2κ̃2ϕ+2κ̃ϕ2 > 0,

a sufficient condition for O′(θ) < 0 and thus for θ0 = θ̃0 being optimal is

η ≥ κ(κ+ ϕ)

ϕ2 + 3κϕ+ κ2
.

D Other Results in Main Text

D.1 Proof of Proposition 5

The first claim follows from the closed-form expressions for effort (14), noting that κ̃ = κ/θ

and κ̃
ϕ+κ̃

increases in κ̃ (decreases in θ), while 1
κ̃(ϕ+κ̃)

decreases in κ̃ (increases in θ).
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Next, calculate

a+m =
∆Λ (κ̃2 + ϕ2)

κ̃ (κ̃+ ϕ)
.

Note that under passive ownership, limκ̃→∞(a+m) = ∆Λ
ϕ

and

a+m− lim
κ̃→∞

(a+m) =
∆Λ (ϕ− κ̃)

κ̃ (κ̃+ ϕ)
.

Thus, activism with stake θ strictly increases transition rate λ = Λ(a+m) relative to passive

ownership (θ = 0) if κ̃ < ϕ, i.e., θ > κ/ϕ which requires κ < ϕ since θ ≤ 1. Activism reduces

transition rate if κ̃ > ϕ, i.e., θ < κ/ϕ.

Finally, calculate

sgn

(
∂λ

∂κ̃

)
= sgn

(
κ̃2 − 2κ̃ϕ− ϕ2

)
Because an increase in θ implies an decrease in κ̃, we obtain sgn

(
∂λ
∂θ

)
= sgn (−κ̃2 + 2κ̃ϕ+ ϕ2)

Rewrite −κ̃2 + 2κ̃ϕ+ ϕ2 as

−κ2 + 2θκϕ+ θ2ϕ2

and solve κ2 − 2θκϕ− θ2ϕ2 = 0 for θ to obtain the only positive root is

θRoot =
κ(
√
2− 1)

ϕ
<

κ

ϕ
.

As such, transition rate strictly increases in θ, i.e., ∂λ
∂θ

> 0, if and only if θ > θRoot.

D.2 Proof of Lemma 1

Recall that of λ = λ(θ) > limθ→0 λ(θ) = limκ̃→∞ λ, we require θ > κ/ϕ. As θ ∈ [0, 1], this

requires κ < ϕ. When θt ≥ κ/ϕ at all times t, then activism increases state-contingent

transition rate λ(θt) at any point in time t and the claim follows.

Clearly, when ϕ ≤ κ, then κ̃ ≥ ϕ, and activism cannot improve transition rate relative

to passive ownership.
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D.3 Proof of Corollary 2

We start with assuming θ0 ∈ (θ, θ). Then, the entry condition simplifies to (23). For any

θ ∈ [θ, θ] and η̃ = θ−θ̃0+ηθ̃0
θ

, we have (in the smooth trading region)

∂[F̂ (θ; β) + Û(θ; β)]

∂β
=

1

Λ + ρ+ β

(
2κ̃η̃∆2

(
ϕΛ2

2(ρ+ Λ)κ̃(ϕ+ κ̃)2

)
− η̃π

Λ + ρ

)
=

∆2Λ2ϕ

(ϕ+ κ̃)2
− π = P ′(θ)θ̇,

which has the same sign as θ − θC . Thus, sgn
(

∂[F̂ (θ;β)+Û(θ;β)]
∂β

)
= sgn[θ − θC ] holds for any

θ ∈ [θ, θ]. It follows that sgn
(

∂E(θ0)
∂β

)
= sgn[θ0 − θC ].

D.4 Proof of Corollary 3

It follows from (A.19) that

θ̇ =
κ(Λ + ρ)(κ+ θϕ) [Λ2∆2θ2ϕ− π(κ+ θϕ)2]

Λ2∆2θϕ (θ2ϕ2 + 3θκϕ+ 3κ2)

=
κ (Λ + ρ) (κ+ ϕ θ)

[
θ2ϕ− π

∆2Λ2 (κ+ ϕ θ)2
]

3κ2ϕθ + 3κϕ2 θ2 + ϕ3 θ3
.

Thus, ∂θ̇
∂∆

> 0 when π > 0; otherwise, ∂θ̇
∂∆

= 0.

Next, (19) immediately implies that ∂θC

∂∆
< 0 for π > 0; otherwise, when π = 0, ∂θC

∂∆
= 0.

Finally, when θ ∈ (0, 1), then according to (A.9):

θ =
κ
(√

ϕπ (2∆2 Λ2 + ϕπ) + ϕπ
)

∆2 Λ2 ϕ
=

κ
(√

ϕπ (2Λ2/∆+ ϕπ/∆4) + ϕπ/∆2
)

Λ2 ϕ
.

Thus, ∂θ
∂∆

< 0 for π > 0; otherwise, when π = 0, ∂θ
∂∆

= 0.

D.5 Proof of Proposition 6

Consider case 1, i.e., lim∆↑∆E λ0(∆) > λP and χ < 0 < U . The activist enters as long as

∆ ≤ ∆E and does not enter for ∆ > ∆E > 0. As such,

lim
∆↑∆E

λ0(∆) > lim
∆↓∆E

λ0(∆) = λP ,

which was to show.
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Consider case 2, i.e., lim∆↑∆E λ0(∆) < λP and χ < 0 < U . and χ > 0 > U . The

activist enters as long as ∆ ≥ ∆E and does not enter for ∆ < ∆E; we could break the ties

alternatively by assuming that the activist only enters if ∆ > ∆E. As such,

lim
∆↑∆E

λ0(∆) = λP > lim
∆↓∆E

λ0(∆),

which was to show.

D.6 Proof of Proposition 7

We start by calculating (for t < T ):

Gt = Et

[∫ ∞

t

e−ρ(u−t)

(
πSρIu +

κa2u + ϕm2
u

2

)
du

]
= πS −

∫ ∞

t

e−(ρ+Λ)(u−t)

(
λuπ

S − κa2u + ϕm2
u

2

)
du.

Next, define Et := πS − Gt. Minimizing G = G0 is equivalent to maximizing E0.

Consider the regulator’s auxiliary optimization

max
(at,mt)t≥0

E0.

It is clear that the solution features time-stationary effort levels (for t < T ) with at = a∗

and mt = m∗. In particular,

(a∗,m∗) := arg max
a,m≥0

{
Λ(a+m)πS −

(
κa2 + ϕm2

2

)}
. (D.1)

The solution to (D.1) is a∗ = ΛπS

κ
and m∗ = ΛπS

ϕ
.

In first best, optimal efforts satisfy at = aFB = Λ∆
κ

and mt = mFB = Λ∆
ϕ
. Setting πS = ∆

implements xFB = x∗ for x = a,m and thus minimizes G.

D.7 Proof of Proposition 8

Conditional on activist entry, the solution is time-stationary with constant activist stake θ

and constant effort levels characterized in (14). As argued in the proof of Proposition 7,

Appendix F.2, and the main text, minimizing G is equivalent to maximizing

E0 =
∫ ∞

0

e−(ρ+Λ)t

(
λtπ

S − κa2t + ϕm2
t

2

)
dt
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which under β = 0 simplifies to

E0 =
1

Λ + ρ

{
Λ(a+m)πS −

(
κa2 + ϕm2

2

)}
.

Provided that (6) does not bind and holding θ = θ̃0 fixed, optimal ∆G = ∆ solves the first

order condition

πS ∂λ

∂∆
− κa

∂a

∂∆
− ϕm

∂m

∂∆
= 0.

Thus,

(ΛπS − κa)
∂a

∂∆
+ (ΛπS − ϕm)

∂m

∂∆
= 0.

Using (14), the first order condition becomes(
πS − θϕ∆

ϕ+ κ̃

)
ϕ

κ̃

(
1

ϕ+ κ̃

)
+

(
πS − κ̃∆

ϕ+ κ̃

)
κ̃

ϕ

(
1

ϕ+ κ̃

)
= 0.

This is equivalent to

ϕ2
(
πS(ϕ+ κ̃)− θϕ∆

)
+ κ̃2

(
πS(ϕ+ κ̃)− κ̃∆

)
= 0,

which we solve for

∆G = ∆ = πS

(
(ϕ2 + κ̃2)(ϕ+ κ̃)

θϕ3 + κ̃3

)
.

Clearly, for ϕ, κ̃ ∈ (0,∞), we have (ϕ2+κ̃2)(ϕ+κ̃)
θϕ3+κ̃3 > 1, so that πS

(
(ϕ2+κ̃2)(ϕ+κ̃)

θϕ3+κ̃3

)
> πS.

D.8 Proof of Proposition 9

Conditional on activist entry, the solution is time-stationary with constant activist stake θ

and constant effort levels characterized in (14). As shown in Proposition 8, it is optimal to

set ∆G = ∆G
∗ when (6) does not bind. When (6), we obtain under the stipulated conditions

that ∆ = ∆G = ∆E. As a result, ∆G = min{∆E,∆G
∗ }.

D.9 Proof of Proposition 10

As argued in the proof of Proposition 7, Appendix F.2, and the main text, minimizing G is

equivalent to maximizing

E0 =
∫ ∞

0

e−(ρ+Λ)t

(
λtπ

S − κa2t + ϕm2
t

2

)
dt.
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with at = a(θt) and mt = m(θt) characterized in (14). We can calculate

E0 =
λ(θ0)π

S − κa(θ0)2+ϕm(θ0)2

2

Λ + ρ+ β
+

β

Λ + ρ+ β

(∫ ∞

Tβ

e−(ρ+Λ)(t−Tβ)

(
λtπ

S − κa2t + ϕm2
t

2

)
dt

)
.

Next, we introduce

δ(θ) :=
∂

∂∆

{
Λ(a+m)πS −

(
κa2 + ϕm2

2

)}
.

Using (14), we can calculate

δ(θ) = πS ∂λ

∂∆
− κa

∂a

∂∆
− ϕm

∂m

∂∆
= 0.

and by means of (14):

δ(θ) = πS

(
Λ (κ̃2 + ϕ2)

κ̃ (κ̃+ ϕ)

)
− θϕ2

κ̃

(
Λ2∆

(ϕ+ κ̃)2

)
− κ̃2

ϕ

(
Λ2∆

(ϕ+ κ̃)2

)
.

The term

(
Λ (κ̃2+ϕ2)
κ̃ (κ̃+ϕ)

)
strictly increases in θ (i.e., decreases in κ̃) for κ̃ < ϕ, i.e., for κ < ϕ

and θ > κ/ϕ. Therefore, when Λ is sufficiently small, the first term “dominates” and it

follows that δ′(θ) > 0 for κ̃ < ϕ (which is assumed).

Suppose that ∆P = ∆E, i.e., (6). Then, U does not depend on β, while χ decreases with

β (see Proposition 4). It follows that when U ≥ 0 > χ, ∆E =
√

−U
χ

decreases with β and

strictly so for U > 0.

Next, suppose that ∆P < ∆E, i.e., (6) does not bind in optimum. As π = 0, the level of

∆ does not affect the activist’s trading, in that ∂x
∂∆

= 0 for x ∈ {θ̇, θ, θ, θC}. Furthermore,

π = 0 implies that after time T β, θ̇ > 0 and the activists stake θt = θ gradually increases

over time. As such, δ(θt) increases over time after T β. That is, for any times t′ ≥ t, we

obtain θt′ ≥ θt and δ(θt′) ≥ δ(θt), where the inequalities may be strict after T β.

Because (6) does not bind (and assuming ∆G < ∆), we obtain that ∆G solves the first-

order condition ∂E0
∂∆

= 0, that is,

1

Λ + ρ+ β

{
∂

∂∆

(
λ(θ0)π

S − κa(θ0)
2 + ϕm(θ0)

2

2

)
+ β

(∫ ∞

Tβ

e−(ρ+Λ)(t−Tβ) ∂

∂∆

(
λtπ

S − κa2t + ϕm2
t

2

)
dt

)}
= 0.

where it was used that ∆ does not affect trading strategy. We can rewrite the first order
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condition as
1

Λ + ρ+ β

{
δ(θ0) + β

(∫ ∞

Tβ

e−(ρ+Λ)(t−Tβ)δ(θt)

)}
= 0.

Note that δ(θt) ≥ δ(θ0). As, in addition, there exists an interval of times after time T β on

which θt > θ0 and δ(θt) > δ(θ0), it follows that 1
Λ+ρ+β

{
δ(θ0) + β

(∫∞
Tβ e

−(ρ+Λ)(t−Tβ)δ(θt)
)}

increases in β (given ∆) and therefore ∆G increases in β.

E Solution with Investment Subsidies and Proofs of

Proposition 11 and Corollary 4

E.1 HJB Equation and Efforts

As in the baseline, there exists a smooth trading region (θ, θ). To avoid studying degenerate

cases, we assume (as in the main text) that this smooth trading region is non-empty in that

0 ≤ θ < θ < 1.

With firm-level investment subsidies, the activist’s HJB equation in the smooth trading

region changes to

(ρ+ Λ)V (θ) = max
B≥0,θ̇

{
θ

(
µ+

ϕm2s

2
− π − c

)
− κa2

2
(E.1)

+ Λθ
[
V D + (a+m)(∆−B)

]
+ θ̇
[
V ′(θ)− P (θ)

]}
,

subject to (9), (8), and (10). Equation (E.1) differs from the HJB equation in the baseline,

i.e., (11), only in that the firm’s cash flow rate is now augmented by the firm-level subsidy
ϕm2s

2
. As before, we have for an interior solution θ̇ ∈ (−∞,∞) that V ′(θ) = P (θ), that is,

(12) holds in the smooth trading region.

Inserting (10) and using V ′(θ) = P (θ) simplifies to

(ρ+ Λ)V (θ) = max
B≥0

{
θ

(
µ− π − ϕm2(1− s)

2

)
− κa2

2
+ Λθ

[
V D + (a+m)∆

]}
, (E.2)

subject to (8), i.e., m = ΛB
ϕ
.

The first-order condition with respect to m yields (with ∂B
∂m

= ϕ
Λ
and ∂a

∂m
= − θϕ

κ
):

θ

(
−ϕ(1− s)m+ Λ

(
1− ϕ

κ

)
∆

)
+ θϕa = 0. (E.3)
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Observe that according to (9):

a =
θΛ(∆−B)

κ
=

θ(Λ∆− ϕm)

κ
.

Consequently, the first-order condition (E.3) simplifies (for θ > 0):

−ϕ(1− s)m+ Λ

(
1− ϕ

κ

)
∆+

θ(Λ∆− ϕm)

κ
= 0.

Denoting κ̃ = κ/θ, we can solve

a = a(θ) =
∆Λ (ϕ− κ̃ s)

ϕκ̃ (κ̃(1− s) + ϕ)
and m = m(θ) =

∆Λ κ̃

ϕκ̃ (κ̃(1− s) + ϕ)
,

which is (30). Using (10), the manager’s flow wage is

c(θ) =
ϕm(θ)2

2
− Λ(a(θ) +m(θ))B(θ) with B(θ) =

ϕm(θ)

Λ
. (E.4)

Accordingly, the transition rate λ = Λ(a+m) satisfies

λ =
∆Λ2 (κ̃2 + ϕ2 − κ̃ ϕ s)

ϕκ̃ (κ̃(1− s) + ϕ)
. (E.5)

Thus,
∂λ

∂s
= (κ̃(1− s) + ϕ) (−κ̃ϕ) + κ̃

(
κ̃2 + ϕ2 − κ̃ ϕ s

)
.

It follows that sgn
(
∂λ
∂s

)
= sgn(κ̃− ϕ).

Plugging optimal efforts from (30) back into the HJB equation (E.2), we obtain the

solution denoted by V̂ (θ) = V (θ), i.e.,

V̂ (θ) =
θ

ρ+ Λ

(
µ− π + ΛV D +

∆2 Λ2 (κϕθ(1− s) + κ2 + θ2ϕ2)

2κϕ (κ(1− s) + ϕθ)

)
. (E.6)

Note that V (θ) = V̂ (θ) in the smooth trading region. Further, P (θ) = V̂ ′(θ) in the smooth

trading region. As in the baseline, V̂ (θ) is the activist’s value function and payoff that would

prevail absent any trading opportunities. That is, in the smooth trading region, the activist

cannot capture any gains from trade.
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E.2 Further Solution Steps

The further solution steps run as in the baseline. There exists a lower threshold θ. We

present closed-form solution in the general case with firm-level subsidy s ∈ [0, 1]. Define

κ̃ = κ/θ.

We have for the activist’s scaled value function in the smooth trading region:

Ṽ :=
V̂ (θ)

θ
=

1

ρ+ Λ

(
µ− π + ΛV D +

∆2 Λ2 (κ̃ ϕ(1− s) + κ̃2 + ϕ2)

2κ̃ ϕ (κ̃(1− s) + ϕ)

)
(E.7)

and for the stock price under perpetual passive ownership:

P 0 = lim
κ̃→∞,π→0

Ṽ =
1

ρ+ Λ

(
µ+ ΛV D +

∆2 Λ2

2ϕ(1− s)

)
. (E.8)

The price in the smooth trading region is P (θ) = V̂ ′θ) with

V̂ ′(θ) =
1

ρ+ Λ

(
µ− π + ΛV D +

∆2 Λ2
[
κ3(1− s) + 2κ2 ϕθ(1− s)2 + 4κϕ2 θ2(1− s) + 2ϕ3 θ3

]
2κϕ(κ(1− s) + ϕ θ)2

)
.

The trading rate within (θ, θ) solves as in the baseline the equation (18) and is given by

θ̇ =
κ (Λ + ρ) (κ(1− s) + ϕ θ)

[
θ(θϕ− κs)− π

∆2Λ2 (κ(1− s) + ϕ θ)2
]

κ3 s(3s− s2 − 2) + 3κ2ϕθ(1− s)2 + 3κϕ2 θ2(1− s) + ϕ3 θ3
. (E.9)

The stock price under perpetual and full active ownership becomes

P 1 = V̂ (1) +
π + 1

2
κa(1)2

Λ + ρ
(E.10)

=
1

ρ+ Λ

[
µ+ ΛV D +

∆2 Λ2 (κϕ(1− s) + κ2 + ϕ2)

2κϕ (κ(1− s) + ϕ)
+

1

2κ

(
∆Λ (ϕ θ − κ s)

(κ(1− s) + ϕ)

)2
]
.

Note that θ̇ = 0 at θ = θC with

θC =
κ
(
2ϕπ(1− s) + ∆2 Λ2 s+∆Λ

√
∆2 Λ2 s2 + 4ϕπ(1− s)

)
2(∆2 Λ2 ϕ− ϕ2 π)

.

The lower boundary solves V̂ (θ) = θP 0 and, provided that θ ∈ (0, 1), is given by

θ =
κ
(√

ϕπ (2∆2 Λ2 + ϕπ) + ϕπ +∆2 Λ2 s
)

∆2 Λ2 ϕ
. (E.11)

68



The randomization rate ξ satisfies (with P (θ) = V̂ ′(θ)):

(ρ+ Λ)P (θ) = µ+
ϕm(θ)2s

2
− c(θ) + ΛV D + Λ[a(θ) +m(θ)](∆−B) + ξ(P 0 − P (θ))

= µ− ϕm(θ)2(1− s)

2
+ ΛV D + Λ[a(θ) +m(θ)]∆ + ξ(P 0 − P (θ))

= (ρ+ Λ)P̂ (θ) + ξ(P 0 − P (θ))

with

P̂ (θ) = µ− ϕm(θ)2(1− s)

2
+ ΛV D + Λ[a(θ) +m(θ)]∆.

Thus, as in (A.20), we get

ξ =
(Λ + ρ)

[
P̂ (θ)− P (θ)

]
P (θ)− P 0

. (E.12)

The upper boundary, when interior, solves V̂ (θ) = V̂ (1) − (1 − θ)P 1, with P 1 = P̂ (1).
Provided that θ ∈ (0, 1), the closed form expression is θ = N/D with

N :=

{
∆4 Λ4 κ6 s6 − 6∆4 Λ4 κ6 s5 + 13∆4 Λ4 κ6 s4

− 12∆4 Λ4 κ6 s3 + 4∆4 Λ4 κ6 s2 − 6∆4 Λ4 κ5 ϕ s5 + 26∆4 Λ4 κ5 ϕ s4

− 42∆4 Λ4 κ5 ϕ s3 + 26∆4 Λ4 κ5 ϕ s2 − 4∆4 Λ4 κ5 ϕ s+ 15∆4 Λ4 κ4 ϕ2 s4 − 44∆4 Λ4 κ4 ϕ2 s3

+ 52∆4 Λ4 κ4 ϕ2 s2 − 20∆4 Λ4 κ4 ϕ2 s

+∆4 Λ4 κ4 ϕ2 − 20∆4 Λ4 κ3 ϕ3 s3 + 36∆4 Λ4 κ3 ϕ3 s2 − 30∆4 Λ4 κ3 ϕ3 s

+ 6∆4 Λ4 κ3 ϕ3 + 15∆4 Λ4 κ2 ϕ4 s2 − 14∆4 Λ4 κ2 ϕ4 s+ 7∆4 Λ4 κ2 ϕ4 − 6∆4 Λ4 κϕ5 s

+ 2∆4 Λ4 κϕ5 +∆4 Λ4 ϕ6 − 4∆2 Λ2 κ6 ϕπ s5 + 20∆2 Λ2 κ6 ϕπ s4

− 44∆2 Λ2 κ6 ϕπ s3 + 52∆2 Λ2 κ6 ϕπ s2 − 32∆2 Λ2 κ6 ϕπ s+ 8∆2 Λ2 κ6 ϕπ

+ 20∆2 Λ2 κ5 ϕ2 π s4 − 72∆2 Λ2 κ5 ϕ2 π s3 + 112∆2 Λ2 κ5 ϕ2 π s2 − 88∆2 Λ2 κ5 ϕ2 π s

+ 28∆2 Λ2 κ5 ϕ2 π − 40∆2 Λ2 κ4 ϕ3 π s3 + 96∆2 Λ2 κ4 ϕ3 π s2

− 92∆2 Λ2 κ4 ϕ3 π s+ 36∆2 Λ2 κ4 ϕ3 π + 40∆2 Λ2 κ3 ϕ4 π s2

− 56∆2 Λ2 κ3 ϕ4 π s+ 24∆2 Λ2 κ3 ϕ4 π − 20∆2 Λ2 κ2 ϕ5 π s+ 12∆2 Λ2 κ2 ϕ5 π + 4∆2 Λ2 κϕ6 π

+ 4κ6 ϕ2 π2 s4 − 16κ6 ϕ2 π2 s3 + 24κ6 ϕ2 π2 s2 − 16κ6 ϕ2 π2 s+ 4κ6 ϕ2 π2 − 16κ5 ϕ3 π2 s3

+ 48κ5 ϕ3 π2 s2 − 48κ5 ϕ3 π2 s+ 16κ5 ϕ3 π2

+ 24κ4 ϕ4 π2 s2 − 48κ4 ϕ4 π2 s+ 24κ4 ϕ4 π2 − 16κ3 ϕ5 π2 s+ 16κ3 ϕ5 π2 + 4κ2 ϕ6 π2

}1/2

+ 2κϕ3 π + 2κ3 ϕπ + 4κ2 ϕ2 π +∆2 Λ2 ϕ3 − 3∆2 Λ2 κ3 s2

+∆2 Λ2 κ3 s3 − 4κ3 ϕπ s− 4κ2 ϕ2 π s+ 2κ3 ϕπ s2 −∆2 Λ2 κϕ2

−∆2 Λ2 κ2 ϕ+ 2∆2 Λ2 κ3 s−∆2 Λ2 κϕ2 s+ 4∆2 Λ2 κ2 ϕ s−∆2 Λ2 κ2 ϕ s2
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and

D := 2∆2 Λ2 ϕ (κ(1− s) + ϕ)
2

The randomization rate ξ satisfies as in (A.21):

ξ =
(Λ + ρ)

[
P̂ (θ)− P (θ)

]
P (θ)− P 1

. (E.13)

Finally, as in Proposition 2, the activist’s value function after time T β satisfies V (θ) = θP 0

for θ ∈ [0, θ), V (θ) = V̂ (θ) for θ ∈ [θ, θ], and V (θ) = V (1)− (1− θ)P 1 for θ ∈ (θ, 1].

Prior to time T β, value function satisfies (20). Likewise, as in Proposition 2 the stock

price after time T β satisfies P (θ) = V ′(θ) in all states θ where V (θ) is differentiable. Thus,

P (θ) = V̂ ′(θ) for θ ∈ [θ, θ], P (θ) = P 0 for θ ∈ [0, θ), and P (θ) = P 1 for θ ∈ (θ, 1]. Before

time T β, stock price satisfies (21). And, before time T β, efforts satisfy (30).

E.3 Entry Condition

Fix θ0 = θ. Then, the activist enters as long as

V β(θ0)− (1− η)θ̃0P
β(0) +

[
θ0 − (1− η)θ̃0

]
P β(θ0)

= V β(θ0)− (1− η̃)θ0P
β(0) +

[
θ0 − (1− η̃)θ0

]
P β(θ0),

with η̃ = θ0−θ̃0+ηθ̃0
θ0

. Given our closed-form expressions, calculations analogous to the ones in

the proof of Proposition 4 yield the stipulated characterization of the entry condition.

E.4 Tightening of Entry Condition

Consider θ̃0 = θ0 = θ ∈ (θ, θ) and η̃ = η. Then, the activist enters as long as

F+U = ∆2
[
(1− η)κ̃(1− s) + (1− 2η)ϕ− T (θ̃0; β)]︸ ︷︷ ︸

≡χs

(
Λ2(ϕ− κ̃s)2

2κ̃ϕ(ρ+ Λ)
[
ϕ+ κ̃(1− s)

]2
)

︸ ︷︷ ︸
≡K

+U ≥ 0,

with

T (θ; β) :=
2βη̃κ̃ϕ

(Λ + ρ+ β)(ϕ− κ̃s)
.

We write F + U = χsK∆2 + U , i.e., F = χsK∆2. Note that U does not depend on s, i.e.,
∂U
∂s

= 0.

Thus, the sign of the derivative of F + U with respect to s is determined by the sign of
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the derivative of χsK. We calculate for s ∈ (0, s)

∂(χsK)

∂s
∝ −

(
κ̃(1− η) +

2βηκ̃2ϕ

(Λ + β + ρ)(ϕ− κ̃s)2

)
K

− 2

(
Λ2(ϕ− κ̃s)

2κ̃ϕ(ρ+ Λ)
[
ϕ+ κ̃(1− s)

]) κ̃2χS[
ϕ+ κ̃(1− s)

]2
Thus, ∂F

∂s
= ∂(F+U)

∂s
< 0 if χs ≥ 0 — in which case an increase in s tightens the entry

condition.

Next, consider χs < 0. Observe that ∂(χsK)
∂s

has the same sign as

F ′ :=−
(
−(1− η)− 2βηϕ2

(Λ + β + ρ)(ϕ− κ̃s)2

)(
Λ2(ϕ− κ̃s)2

2κ̃ϕ(ρ+ Λ)
[
ϕ+ κ̃(1− s)

]2
)

− 2

(
Λ2(ϕ− κ̃s)

2κ̃ϕ(ρ+ Λ)
[
ϕ+ κ̃(1− s)

]) κ̃χs[
ϕ+ κ̃(1− s)

]2
Next, observe that F ′ has the same sign as

− (1− η)− 2βηκ̃ϕ

(Λ + β + ρ)(ϕ− κ̃s)2
− 2κ̃χ2[

ϕ+ κ̃(1− s)
]
(ϕ− κ̃s)

∝ −2κ̃χs −
[
ϕ+ κ̃(1− s)

]
(ϕ− κ̃s)(1− η)− 2βηκ̃ϕ(ϕ+ κ̃(1− s))

(Λ + β + ρ)(ϕ− κ̃s)
.

Consequently, as κ̃ → 0, we obtain F ′ < 0. Hence, as long as κ̃ is not too large, an increase

in s tightens the entry condition, i.e., ∂(F+U)
∂s

< 0.

Likewise, when χs is positive or not too negative (i.e., χs < 0 but |χs| is close to zero),

the sign of F ′ is negative, and ∂(F+U)
∂s

< 0.

E.5 Proof of Corollary 4

Consider that κ̃ < ϕ as well as that κ̃ and s are sufficiently small. Then, as shown in

Proposition 11, an increase in s tightens the entry condition, i.e., ∂(F+U)
∂s

< 0. By assumption,

there exists at least one s that induces F + U ≥ 0. It follows that F + U ≥ 0 when s = 0.

Furthermore, given the activist’s initial stake θ0 = θ, it follows that θt = θ for all t ∈ [0, T ],

so the average transition rate becomes λ0 = λ = λ(θ) = Λ(a(θ) +m(θ). Proposition 11 also

establishes that when κ̃ and s are sufficiently small, activism increases transition rate relative

to passive ownership, so that λ0 > λ
P

0 = limκ̃→∞ λ0.

According to Proposition 11, we have ∂λ
∂s

< 0 conditional on activist entry, so conditional
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on activist entry s = s∗ = 0 maximizes (average) transition rate λ0. Taken together, s = s∗

induces activist entry, leading to higher transition rate than under passive ownership, and

maximizes (average) transition rate under active ownership. As such, s∗ = 0.

Next, consider κ̃ > ϕ. Then, according to Proposition 11, activism leads to lower (av-

erage) transition rate λ0 than would prevail under passive ownership for any s ∈ [0, s]. An

increase in s raises transition rate both under active and passive ownership; see Proposition

11. Thus, the optimal firm-level subsidy s∗ maximizing transition rate is (weakly) positive.

Provided that the entry condition does not bind for s = 0, it follows that s > 0 sufficiently

small does not change the activist’s entry decision relative to s = 0. Then, s∗ > 0.

F Auxiliary Results and Extensions

F.1 Calculating λt

We show how to calculate the average transition rate

λt = ETβ

t

[∫ ∞

t

e−Λ(u−t)Λλudu

]
for t < T with θt = θ. Since Λe−Λx is the density of an exponential distribution with intensity

Λ, we have λt = Et[λT |θt = θ], where the expectation is with respect to the (exponentially

distributed) random time T as well as the random time T β.

After time T β, we can express λt as a function of θt = θ only, i.e., λt = λ(θ). By standard

arguments, λ(θ) solves on (θ, θ) the ODE

Λλ(θ) = Λλ(θ) + λ
′
(θ)θ̇ (F.1)

subject to appropriate boundary conditions to be characterized.

First, when the starting value satisfies θ > θC , i.e., θ drifts up, ODE (F.1) is solved on

(θ, θ) subject to

λ(θ) =
Λλ(θ) + ξλ(1)

Λ + ξ
.

Second, when the starting value satisfies θ ∈ (θ, θC), i.e., θ drifts down, (F.1) is solved on

(θ, θ) subject to

λ(θ) =
Λλ(θ) + ξλ(0)

Λ + ξ
.
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For θ > θ, we have λ(θ) = λ(1) = Λ(a(1) +m(1)) and, for θ < θ, λ(θ) = λ(0) = Λ(a(0) +

m(0)).

For t < T β, we have that λt is constant over time with λt = λ0. We obtain that

λ0 = λ0(θ0) :=
Λλ(θ0) + βλ(θ)

Λ + β
,

with λ(θ) = Λ(a(θ) +m(θ)).

F.2 Calculating G

We start by calculating (for t < T ):

Gt = Et

[∫ ∞

t

e−ρ(u−t)

(
πSρIu +

κa2u + ϕm2
u

2

)
du

]
= πS − ETβ

t

[∫ ∞

t

e−(ρ+Λ)(u−t)

(
λuπ

S − κa2u + ϕm2
u

2

)
du

]
.

Next, define Et := πS − Gt. We integrated out the random time T ; the expectation ETβ

t is

taken (at time t) with respect to the random time T β. The value of T β becomes deterministic

for t > T β.

After time T β, we can express Et as a function of θt = θ only, i.e., Et = E(θ). By standard

arguments, E(θ) solves on (θ, θ) the ODE

(Λ + ρ)E(θ) = λ(θ)πS − κa(θ)2 + ϕm(θ)2

2
+ E ′(θ)θ̇ (F.2)

subject to appropriate boundary conditions to be characterized. Define

Ω(θ) := λ(θ)πS − κa(θ)2 + ϕm(θ)2

2
.

First, when the starting value satisfies θ > θC , i.e., θ drifts up, ODE (F.2) is solved on (θ, θ)

subject to

E(θ) =
Ω(θ) + ξ

(
Ω(1)
Λ+ρ

)
ρ+ Λ+ ξ

.

Second, when the starting value satisfies θ ∈ (θ, θC), i.e., θ drifts down, (F.2) is solved on

(θ, θ) subject to

E(θ) =
Ω(θ) + ξ

(
Ω(0)
Λ+ρ

)
Λ + ρ+ ξ

.
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For θ > θ, we have E(θ) = Ω(1)
Λ+ρ

and, for θ < θ, E(θ) = Ω(0)
Λ+ρ

.

For t < T β, we have that Et is constant over time with Et = E0. We obtain that

E0 :=
Ω(θ0) + βE(θ)
Λ + ρ+ β

.

One then obtains G = G0 = πS − E0. Minimizing G is equivalent to maximizing E = E0.

F.3 Robustness: Empty Smooth Trading Region

When the smooth trading region is empty, the activist’s optimal trading after time T β

involves an immediate lumpy trade either toward zero or one. In particular, in state θ, the

activist either immediately buys or sells the entire firm (i.e., dθ ∈ {−θ, 1− θ}). Then, there
exists a cutoff point θBS ∈ [0, 1] such that for θ > θBS the activist optimally buys and

θ < θBS sells the entire firm, with indifference at θBS when θBS ∈ (0, 1).

When θP 0 > V̂ (1)−(1−θ)P 1 for all θ ∈ [0, 1], then θBS = 1. When θP 0 < V̂ (1)−(1−θ)P 1

for all θ ∈ [0, 1], then θBS = 0. Otherwise, θBS is defined as the unique point in [0, 1] at

which

θBSP 0 = V̂ (1)− (1− θBS)P 1.

The value function satisfies V (θ) = θP 0 for θ < θBS and V (θ) = V̂ (1)−(1−θ)P 1 for θ > θBS.

When θBS = 1, then V (θBS) = P 0 and P (θBS) = P 0. When θBS = 0, then V (θBS) =

V̂ (1) − P 1 and V (θBS) = P 1. When θBS ∈ (0, 1), then V (θBS) = V̂ (1) − (1 − θBS)P 1;

without loss of generality, we may assume that in case of indifference the activist buys the

entire firm, which pins down P (θBS) = P 1.

F.4 Minimum Required Ownership

We now sketch the model solution when the activist’s stake θt must at any point in time

t ≥ 0 exceed a minimum ownership level θ̂ ≤ θ̃0 for activist effort to have impact. Formally,

we stipulate that the probability of success at time T equals mt + atI{θt ≥ θ̂}. As such,

when θt < θ̂, the activist effort has no impact and the activist rationally does not exert any

effort. As the activist values (due to disutility flow π) the firm less than passive investors,

holding a stake θt ∈ (0, θ̂) is clearly suboptimal, so that at no point in time the activist’s

stake θt lies in the interval (0, θ̂).

Note that imposing a minimum ownership requirement θ ≥ θ̂ has no effects on the solution

to the baseline model and is entirely inconsequential in the following instances. First, when

θ0 ≥ min{θC , θ} — which is certainly the case when θ̃0 ≥ min{θC , θ}) — the activist starts
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out with initial stake θ0 ≥ θ̂ and gradually acquires a larger ownership stake. Therefore,

within the baseline equilibrium, we have θt ≥ θ̂.

Second, when θ̂ ≤ θ, then the activist’s stake in the baseline never takes values in (0, θ̂).

To see why this is the case, suppose that θ0 ≥ θ. In this case, we have that the activist’s

stake never takes values in (0, θ). When, on the other hand, θ̃0 ≤ θ0 < θ, the activist sells its

entire stake at time T β, while its stake is constant beforehand so that θ never takes values

in (0, θ̂).

Otherwise, when θ̂ > θ and θ0 ≥ θ̃0 ≥ θ̂ satisfies θ0 < θC , the activist gradually divests

its stake after entry until its stake reaches the minimum required stake θ̂. Because θ̂ > θ

and therefore V̂ (θ̂) > θ̂P 0, the activist is strictly better off not trading at all than selling off

its entire stake at once. Then, the activist stops trading at θ̂ and its stake remains constant

up to time T . Note that while the activist does not exit the firm in this case, the qualitative

model outcomes are similar to the baseline, in that the activist gradually divests and sells

its stake whenever θ0 < θC , even if we impose θ ≥ θ̂.

We conclude that including a minimum stake requirement for the activist does not change

our key findings in a qualitative sense and, in many instances of our model, has no effects

at all. Indeed, as we show in Proposition 2, there exists a strictly positive (endogenous)

level θmin > 0 so that the activist’s stake never takes any value in (0, θmin) and the activist

always holds non-trivial ownership of the firm. Imposing that the activist’s stake must exceed

θ̂ ≤ θmin would in fact not change our results.

F.5 Micro-foundation of Negative Reservation Utility

Suppose that the activist derives negative flow disutility πB ≥ 0 until the firm is transformed

irrespective of its investment decision. This captures the activist’s broad mandate as in

Oehmke and Opp (2022) and implies a negative reservation utility as we now show.

To begin with, note that for all times t ≥ T , the activist derives a utility flow of −πB

if the firm failed at transformation at time T . Total disutility upon failure therefore equals
πB

ρ
. The activist’s terminal payoff upon success at time T then equals θT (V

D + ∆). The

activist’s terminal payoff upon failure at time T equals θTV
D − πB

ρ
.

The activist’s payoff at t < T can be written as

Vt = max
(au,cu,Bu,dθu)u≥t

Et

[ ∫ T

t

e−ρ(u−t)

(
θu(µ− π − cu)du− πBdu− κa2u

2
du− (Pu + dPu)dθu

)
+ e−ρT θT

[
V D − πB

ρθT
+ (aT +mT )

(
∆−BT +

πB

ρθT

)]]
.
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That is, total time-t dis-utility flow before successful transformation is θtπ + πB, which

captures value-alignment preference via π and broad mandate via πB.

If the activist does not invest, then passive investors implement managerial effort

mP =
Λ∆

ϕ
,

and the activist’s life-time utility in that scenario becomes

R = E0

[∫ TS

0

e−ρt(−πB)dt

]
=

1

Λ + ρ

(
−πB +

−πBΛ(1−mP )

ρ

)
≤ 0, (F.3)

with the inequality being strict if πB < 0. Here, T S is the first time at which the firm

becomes clean; if the firm fails to transform, then T S = ∞ and otherwise T S = T whereby

T arrives at exogenous intensity Λ. We can rewrite

R = −πB

ρ
+

πB

ρ

(
ΛmP

ρ+ Λ

)
.

In case we do not assume a separate outside option component, the activist enters now if

and only if (with K(θ0) from (5)):

E(θ0) := max
θ0∈[θ̃0,1]

[
V β(θ0)−K(θ0)

]
≥ R, (F.4)

so R := R < 0 when πB > 0. Therefore, assuming πB > 0 leads effectively to a negative

outside option or reservation utility for the activist, possibly incentivizing the activist to

invest in the firm despite potential financial losses, i.e.,
[
V β(θ0)−K(θ0)

]
< 0.

We can solve the model of this variant similar to our baseline case. As the activist’s

payoff has a component that does not depend on its stake, we impose for regularity purposes

that the activist can affect firm performance and design the manager’s contract if and only

if θ ≥ θ̂ for exogenous constant θ̂ ∈ (0, θ̃]. For θ < θ̂, passive investors are in control and

optimally set the managerial effort level mP , while the activist’s effort becomes zero.

Although the analysis will become more complicated and involved, the key economic

insights remain similar. To highlight the key economic trade-offs associated with activism

in a tractable manner and to afford maximum theoretical clarity, we therefore take the

reservation value (for simplicity) as exogenous.
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F.5.1 Solution Details

We sketch the model solution.

Effort Incentives. Suppose θ ≥ θ̂. As in the baseline, the manager’s effort ismt = m(θ) =
ΛBt

ϕ
, while the activist’s effort is

at = a(θ) =
πB/ρ+ θ(∆−Bt)

κ
,

with endogenous payment Bt to the manager in case of successful transition.

Optimal Efforts and Value Function. Consider θ ≥ θ̂ > 0. After time T β, the activist’s

value function solves in the smooth trading region (where dθ = θ̇dt) the HJB equation

(ρ+ Λ)V (θ) = max
B≥0,θ̇

{
θ (µ− π − c)− κa2

2
− πB

+ Λθ
[
V D − πB

ρθ
+ (a+m)

(
∆−B +

πB

ρθ

)]
+ θ̇
[
V ′(θ)− P (θ)

]}
,

For θ̇ ∈ (−∞,+∞) to be optimal, we must have

V ′(θ) = P (θ).

For convenience, define ΠB := πB/ρ.

We can solve above optimization in the HJB equation for

m(θ) =
Λκ

(
ΠB +∆ θ

)
ϕ θ (κ+ ϕ θ)

and a(θ) =
Λϕ θ

(
ΠB +∆ θ

)
κ2 + ϕ θ κ

.

That is, for ∆̃ := ∆ + ΠB/θ and κ̃ := κ/θ (assuming these are well-defined), efforts satisfy

m = m(θ) =
κ̃

ϕ

(
Λ∆̃

ϕ+ κ̃

)
and a = a(θ) =

ϕ

κ̃

(
Λ∆̃

ϕ+ κ̃

)
. (F.5)

Note that above expression for m(θ) tends to ∞ as θ → 0. The reason is that when θ = 0,

the activist does not own the firm anymore and does not incur the cost of compensating

the manager for its effort (which are borne by the firm’s passive owners). Because of its

broad impact preferences, however, the activist still benefits from green transition despite

θ = 0. Hence, the activist would like to implement arbitrarily high managerial effort (and
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set effort to the upper boundary, i.e., m(θ) = m), if it can determine managerial contract

terms despite zero ownership. We preclude this possibility and ensure optimal interior efforts

(a,m) ∈ (0, a) × (0,m) by assuming that the activist must maintain a minimum stake of θ̂

to be able to affect firm performance and to set managerial contract terms. When θ < θ̂, the

firm’s passive owners set managerial contract terms and optimally implement m(θ) = mP ,

while the activist’s effort has no more impact and therefore (optimally) equals a(θ) = 0.

Thus, above expression for m(θ) and a(θ) only applies for θ ≥ θ̂. The assumption of the

minimum required stake is not material to our findings.

Defining Ṽ D := V D − ΠB/θ, µ̃ = µ− πB/θ (assuming these are well-defined), we obtain

the following closed-form expression for the value function V (θ) in the smooth trading region,

with V (θ) = V̂ (θ) and

V̂ (θ) = θ

(
µ̃− π + ΛṼ D

ρ+ Λ
+

∆̃2Λ2 (κ̃2 + ϕκ̃+ ϕ2)

2ϕκ̃ (κ̃+ ϕ) (ρ+ Λ)

)
. (F.6)

Note that θ ≥ θ̂ > 0, so above expressions are well-defined.

Dynamic Trading. As in the baseline, we can differentiate the HJB equation under the

envelope theorem to obtain (with P (θ) = V ′(θ)):

(ρ+ Λ)P (θ) = µ− π − c+ Λ
[
V D + (a+m)(∆−B)

]
− θ

(
∂c

∂a

∂a

∂θ

)
. (F.7)

In addition, the price P (θ) satisfies the pricing equation (17). Combining, we obtain

θ̇ =
1

P ′(θ)

[
−π − θ

(
∂c

∂a

∂a

∂θ

)]
. (F.8)

A closed form expression is obtained by

θ̇ = −
κϕ θ2 (κ+ ϕ θ) (Λ + ρ)

(
−∆2 Λ2 ϕ θ3 +ΠB∆Λ2(κθ − ϕθ2) + Λ2 (ΠB)2 κ+ π κ2 θ + 2π κϕ θ2 + π ϕ2 θ3

)
Λ2 (3∆2 κ2 ϕ2 θ4 + 3∆2 κϕ3 θ5 +∆2 ϕ4 θ6 + 2∆ΠB κ2 ϕ2 θ3 + (ΠB)2(κ4 + 3κ3 ϕ θ + 3κ2 ϕ2 θ2))

.

Lumpy Trading. It turns out convenient (akin to (A.15)) to define

P̂ (θ) :=
µ− 1

2
ϕm(θ)2 + Λ

[
V D + (a(θ) +m(θ))∆

]
Λ + ρ

which is the hypothetical price of the firm under the scenario that θ remains constant up to

T . Note P 0 = P̂ (0) and P 1 = P̂ (1). The activist trades smoothly within some endogenous

interval (θ, θ). The activist buys the entire firm at price P 1 = P̂ (1) for θ > θ and sells the
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entire firm at price P 0 = P̂ (0) for θ < θ. If θ̂ > θ, the activist stops trading at θ̂ in case θ

reaches θ̂ from above.

Provided θ ∈ (0, 1), we have indifference between not trading and buying the entire firm

at θ = θ, i.e.,

V̂ (θ) = V̂ (1)− (1− θ)P 1.

Likewise, provided θ ∈ (0, 1), the activist is indifferent between not trading and selld the

entire firm at θ = θ, i.e.,

V̂ (θ) = θP 0 +R,

where R < 0 from (F.3) is the activist’s expected discounted disutility when the firm is

owned entirely by passive investors.

These two equations can be solved for the thresholds θ ≤ θ. Akin to the baseline, we can

also solve for the randomization rate, if applicable.

Thus, after time T β, the activists value function for θ ∈ [θ, 1] is V (θ) = V̂ (1)− (1− θ)P 1

and the activist’s value function for θ ∈ [0, θ] is V (θ) = θP 0 +R.

Prior to time T β, the value function of the activist V β(θ) satisfies (20), while the stock

price P β(θ) satisfies (21).

Entry. The activist enters at t = 0 if and only if (F.4) holds. Suppose that the activist’s

initial stake satisfies θ0 = θ ∈ [θ, θ]. In this case, one can show that the activist enters at

t = 0 as long as the sum of financial and non-pecuniary payoff is positive, that is, as long as

F + U ≥ 0,

where

F = F̂ (θ; β) := ∆2

(
ϕΛ2

2(ρ+ Λ)κ̃(ϕ+ κ̃)2

)(
κ̃(1− η̃) + ϕ(1− 2η̃)− 2βκ̃η̃

Λ + ρ+ β

)
U = Û(θ; β) :=

R
θ
− π

Λ + ρ

(
1− βη̃

Λ + ρ+ β

)
.
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Here, R is a function of ΠB = πB/ρ with R := N
D
; the entry condition depends on ΠB and

πB only via R and our baseline is obtained for R = 0. The numerator N satisfies

N :=Λ2 ΠB

(
ΛΠB κ3 +ΠB β κ3 +ΠB κ3 ρ+ ΛΠB η κ3 +ΠB β η κ3 +ΠB η κ3 ρ+ 2∆Λϕ3 θ4 + ΛΠB ϕ3 θ3

+ 2∆β ϕ3 θ4 +ΠB β ϕ3 θ3 + 2∆ϕ3 ρ θ4 +ΠB ϕ3 ρ θ3

+ 2ΛΠB κϕ2 θ2 − 2∆β η ϕ3 θ4 + 2∆β κϕ2 θ3 − 2∆ η ϕ3 ρ θ4

+ 2ΠB β κϕ2 θ2 + 2∆κϕ2 ρ θ3 + 2ΠB κϕ2 ρ θ2

+ 2ΛΠB κ2 ϕ θ + 2ΠB β κ2 ϕ θ + 2ΠB κ2 ϕ ρ θ − 2∆Λ η ϕ3 θ4 + 2∆Λκϕ2 θ3

+ 2ΠB β η κ2 ϕ θ − 2∆Λ η κ2 ϕ θ2 − 2∆Λ η κϕ2 θ3 − 4∆β η κϕ2 θ3 − 2∆ η κ2 ϕ ρ θ2 − 2∆ η κϕ2 ρ θ3
)

and the denominator satisfies

D = 2κϕ θ (κ+ ϕ θ)2 (Λ + ρ) (Λ + β + ρ).

Thus, when R > 0 is sufficiently large — which happens when ΠB, i.e., πB = ρΠB, is

sufficiently large (as limΠB→∞ R = +∞) — then U > 0 and the activist enters the firm, even

if it realizes financial losses from doing so and F < 0.

Finally, we could introduce an (additional) exogenous outside option component R (as

in the baseline), in that the activist enters if and only if

E(θ0) := max
θ0∈[θ̃0,1]

[
V β(θ0)−K(θ0)

]
≥ R +R. (F.9)

Then, the entry condition (for θ0 = θ ∈ [θ, θ]) becomes F + U ≥ 0 with F from above and

U = Û(θ; β) :=
R−R

θ
− π

Λ + ρ

(
1− βη̃

Λ + ρ+ β

)
and the conclusions remain unchanged. The activist enters despite financial losses if ΠB,

i.e., πB, is sufficiently large.
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